International Journal of Solids and Structures 51 (2014) 3878-3888

Contents lists available at ScienceDirect )
SOLIDS AND
o o STRUCTURES
International Journal of Solids and Structures - —

journal homepage: www.elsevier.com/locate/ijsolstr

A micromechanics approach to homogenizing elasto-viscoplastic
heterogeneous materials

@ CrossMark

Liang Zhang *, Wenbin Yu

Purdue University, West Lafayette, IN 47907-2045, USA

ARTICLE INFO

Article history:

Received 3 May 2013

Received in revised form 27 March 2014
Available online 29 July 2014

Keywords:

VAMUCH

Nonlinear homogenization

Affine formulation

Viscoplastic anisotropy

Combined isotropic-kinematic hardening

ABSTRACT

The variational asymptotic method for unit cell homogenization (VAMUCH) has emerged as a general-
purpose micromechanics code capable of predicting the effective properties of heterogeneous materials
and recovering the local fields. The objective of this paper is to propose a micromechanics approach
enabling VAMUCH to homogenize elasto-viscoplastic heterogeneous materials. An affine formulation
of the constitutive relations for an elasto-viscoplastic constituent, which exhibits viscoplastic anisotropy
and combined isotropic-kinematic hardening, is derived. The weak form of the problem is derived using
an asymptotic method, discretized using finite elements, and implemented into VAMUCH. The new fea-
tures of VAMUCH are validated with examples such as homogenizing binary, fiber-reinforced, and parti-
cle-reinforced composites. VAMUCH is found to be capable of handling various microstructure, complex
material models, complex loading conditions, and complex loading paths. More sophisticated material
models can be implemented into it.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Heterogeneous materials are widely used in structural
components due to their capabilities of exhibiting designated
in-plane stiffness, bending stiffness, ultimate strength, or thermal
expansion coefficient. When they are deformed to certain extents
at high temperatures, their constituents often exhibit elasto-
viscoplastic behaviors. It is challenging to evaluate their mechanical
responses because their deformations are often accompanied by
material nonlinearity, history dependency, and rate dependency.
Moreover, it is difficult and time consuming to manufacture a great
amount of specimens and to perform various tests on them, while it
is computationally prohibitive to analyze them with all the micro-
structural details because the dimensions of the macroscopic struc-
tures are usually several orders of magnitude greater than the
heterogeneity length scale. Therefore, it is of great practical value
to solve such problems using a micromechanics approach.

In recent decades, numerous efforts have been devoted to
micromechanics. A micromechanics approach generally consists
of the following steps (Yu and Tang, 2007a):

1. Identify the unit cell (UC) of a heterogeneous material.
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2. Compute the effective material properties through the constitu-
tive modeling of the UC.

3. Assign these properties to the macroscopic structure and obtain
the global response.

4. Feedback the global response to the local scale and recover the
local fields (e.g., the displacement, strain, and stress fields).

If the deformation is restricted in the linearly elastic regime it is
history- and rate-independent. In this case, the effective material
properties remain constant all the time, and one just needs to per-
form the constitutive modeling. The micromechanics theories of
linearly elastic heterogeneous materials are well established. These
theories include the mean-field homogenization (MFH) (Hill,
1965a; Mori and Tanaka, 1973), Hashin and Shtrikman’s varia-
tional approach (Hashin and Shtrikman, 1963), the third-order
bounds (Milton, 1981), the method of cells (MOC) (Aboudi,
1981), the recursive cell method (Banerjee and Adams, 2004),
and the mathematical homogenization theories (MHT)
(Bensoussan et al., 1978; Murakami and Toledano, 1990), and some
others. If the deformation is extended to the viscoplastic regime, it
becomes history- and rate-dependent. In this case, there does not
exist a correspondence principal between the stress and strain
rates, and one must linearize the constitutive relations and
perform an incremental analysis.

MFH is among the most popular micromechanics approaches
and consists of two major approaches, i.e., the tangent and secant
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approaches. As the name suggests, the tangent approach is based
on a tangent linearization of the constitutive relations (Hill,
1965b; Lebensohn and TomT, 1993), while the secant approach is
based on a secant linearization (Berveiller and Zaoui, 1978;
Tandon and Weng, 1988; Suquet, 1995). Hutchinson (1976) first
enabled Hill’'s incremental approach to homogenize rigid-
viscoplastic polycrystals. Weng (1982) proposed a secant approach
to homogenizing elasto-viscoplastic polycrystals, in which the
inelastic strain is treated as a stress-free eigenstrain such that
the problem is transformed to an elastic one. Nemat-Nasser and
Obata (1986) later improved this approach by taking account into
finite deformation. These early approaches are unable to take
account into the viscoplastic interactions among different constit-
uents and tend to generate too stiff predictions.

Elaborate efforts have been devoted to overcoming these draw-
backs. Li and Weng (1998) improved the secant approach by trans-
forming the problem to a viscoelastic one, while Molinari et al.
(1987, 1997) improved the tangent approach by transforming the
problem to a thermoelastic one. Despite improvements, these
two approaches either require a two-phase heterogeneous mate-
rial or tend to underestimate the flow stress. Masson and his
coworkers (Masson and Zaoui, 1999; Masson et al., 2000) proposed
an affine approach, in which the constitutive relations are first lin-
earized in the time domain and then transformed to the Laplace
domain such that the problem is transformed to a thermoelastic
one, and Pierard and his coworkers (Pierard and Doghri, 2006;
Pierard et al., 2007) later enabled this approach to handle two-
phase heterogeneous materials. Although the affine approach is
capable of generating close predictions, it requires the inverse
Laplace transformation, which is computationally costly. To over-
come this drawback, Doghri et al. (2010) proposed an incremen-
tally affine approach, in which the constitutive relations are
linearized in numerous discrete time intervals such that the
inverse Laplace transformation is avoided. Despite success, none
of the aforementioned approaches can either recover the local
fields or incorporate viscoplastic anisotropy and combined isotro-
pic-kinematic hardening. Therefore, there is a need for a more
powerful approach.

Numerous attempts have been made not only to linearize the
constitutive relations but also to recover the local fields. Aboudi
and his co-workers (Aboudi, 1982; Paley and Aboudi, 1992) devel-
oped the method of cells (MOC) and later the generalized method
of cells (GMC) to achieve this goal. A detailed review on these
approaches can be found in Adoudi (2004). The basic ideas of these
approaches include subdividing the UC into numerous cuboid sub-
cells, solving for the average strains and stresses over each subcell,
and estimating the local fields. Despite improvements, these
approaches suffer two major drawbacks: first, discretizing the UC
using cuboid subcells may introduce considerable domain approx-
imation errors; second, approximating the local fields using the
average local strains and stresses may introduce considerable
approximation errors. In fact, it is always more accurate to discret-
ize the UC using a finite element mesh and to approximate the
local fields using shape functions and nodal values. To overcome
these drawbacks, Aboudi et al. (2002) developed the high fidelity
generalized method of cells (HFGMC). Despite high accuracy,
HFGMC is found to be quite computationally costly (Williams
et al., 2007). All these lead one to seek for a more accurate and
efficient approach.

In recent years, Yu and his co-workers (Yu and Tang, 2007a,b;
Tang and Yu, 2007, 2008a,b) developed the variational asymptotic
method for unit cell homogenization (VAMUCH). VAMUCH is a
general-purpose micromechanics code capable of predicting the
effective material properties and recovering the local fields. One
of its unique features is that it has the minimum number of
assumptions:

1. The heterogeneous material can be homogenized.

2. The effective material properties of a UC are independent of the
geometry and boundary conditions of the macroscopic
structure.

These two assumptions place the fewest restrictions on problem
solving. Although VAMUCH seems as versatile as the traditional
finite element method (FEM), it is distinct to FEM at least in the fol-
lowing aspects:

1. VAMUCH is specially developed for the constitutive modeling,
while FEM is not, or to say, VAMUCH directly solves for the
constitutive relations, while FEM directly solves for the
displacements, strains, and stresses under certain load
conditions.

2. VAMUCH can model the UC using the smallest mathematical
building block, not necessarily a 3D volume, while FEM cannot
(e.g., VAMUCH can use 1D and 2D UCs to compute the complete
set of 3D properties of binary and fiber-reinforced composites,
respectively (Yu and Tang, 2007a), while FEM has to use 3D
UCs to achieve this).

3. VAMUCH solves for the fluctuation functions (see Eq. (49)),
while FEM solves for the displacements.

4. VAMUCH deals with periodic boundary conditions, while FEM
mostly deals with displacement and traction boundary
conditions.

5. VAMUCH can obtain the complete set of effective material
properties through one analysis, while FEM cannot (e.g., for
linearly elastic materials, FEM has to run six times to do this
(Xia et al., 2003)).

The objective of this paper is to propose a micromechanics
approach enabling VAMUCH to homogenize elasto-viscoplastic
heterogeneous materials. An affine formulation of the constitutive
relations for an elasto-viscoplastic constituent, which exhibits
viscoplastic anisotropy and combined isotropic-kinematic harden-
ing, is derived. The weak form of the problem is derived using an
asymptotic method, discretized using finite elements, and imple-
mented into VAMUCH. The new features of VAMUCH are validated
with examples such as homogenizing binary, fiber-reinforced, and
particle-reinforced composites.

2. Thermodynamic formulations

Consider a heterogeneous material of an identifiable UC. With-
out loss of generality, let its constituents all be elasto-viscoplastic.
Note that an elastic constituent can be treated as an elasto-visco-
plastic one with infinite yield stress. In this section, some funda-
mentals of thermodynamics will be briefed.

Let  denote the Helmholtz free energy per unit mass of the
constituent. According to the theory of thermodynamics, ¥ can
be expressed as a function of a suitable set of independent state
variables characterizing the elastic and viscoplastic behaviors of
the constituent, e.g.,

V= y(ear), (M

where € denotes the elastic strain tensor, « is a second-order ten-
sor accounting for kinematic hardening, and r is a scalar accounting
for isotropic hardening. Assume that the constituent exhibits
uncoupled elastic and viscoplastic behaviors. In this case, i can be
decomposed into its elastic part, ¥°, and its hardening part, y*?, i.e.,

V(€ 1) = y(€) + Y™ (o). 2)

The thermodynamic forces conjugate to the state variables in Eq. (1)
can be defined as
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