
Buckling and post-buckling of gradient and nonlocal plasticity columns
experiencing softening

Vincent Picandet ⇑, Noël Challamel, Sovannara Hin
Université de Bretagne Sud, EA 4250, LIMATB, F-56100 Lorient, France

a r t i c l e i n f o

Article history:
Received 6 September 2013
Received in revised form 14 April 2014
Available online 12 August 2014

Keywords:
Buckling
Elastoplasticity
Gradient plasticity
Variational principle
Softening
Structure

a b s t r a c t

The buckling and the post-buckling behaviors of a perfect axially loaded column are analytically investi-
gated through a global bilinear moment–curvature elastoplastic constitutive law. Three plasticity cases
are studied, namely the linear hardening plasticity law, the perfect elastoplastic case and the softening
case. The applications of such a study can be found in various structural engineering problems, including
reinforced concrete, steel, timber or composite structures. It is analytically shown that for all kinds of
elastoplastic behaviors, the plasticity phenomena lead to a global softening branch in the load–deflection
diagram. The propagation of the plasticity zone during the post-buckling process is analytically
characterized in case of linear hardening or softening plasticity laws. However, it is shown that the
unphysical elastic unloading solution necessarily occurs in presence of local softening moment–curva-
ture constitutive law. A nonlocal plasticity moment–curvature softening law is then used to control
the localization branch in the post-buckling stage. This nonlocal plasticity law includes the explicit
and the implicit gradient plasticity law. Higher-order plasticity boundary conditions are derived from
an extended variational principle. Some parametric studies finally illustrate the main findings of this
paper, including the plasticity modulus effect on the post-buckling behavior of these plasticity structural
systems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is focused on the buckling and post-buckling behav-
ior of elastoplastic columns with hardening or softening moment–
curvature constitutive law. Softening is understood in this study as
a decrease of the stress variable (or the bending moment variable
at the beam scale) for an increase of the strain variable (or the
curvature at the beam scale). This phenomenon typically arises
when the material loses its strength during a degrading loading
process. A lot of engineering applications are concerned by such
kind of elastoplastic moment–curvature models, which may be
used for characterizing the ultimate behavior of inelastic structural
elements.

Softening moment–curvature laws were probably first intro-
duced for modeling cracking phenomena in reinforced concrete
beams (Wood, 1968). Such engineering bending moment–
curvature models can be useful for the fundamental understanding
of the collapse of structural members. For instance, these beam
models can be used to compute the global behavior of structural

members composed of quasi-brittle materials experiencing some
material softening phenomenon beyond a critical threshold
(reinforced concrete members, timber beams, composite
members . . . see for instance Wood (1968), Bažant (1976), Jirásek
and Bažant (2002), Bažant and Cedolin (2003), Casandjian et al.
(2013) and Hellesland et al. (2013)). On the other hand, geometri-
cal softening may also be modeled in a simplified unidimensional
approach, with such a bending-curvature constitutive law. This
geometrically nonlinear softening phenomenon is associated in
this case with the local buckling phenomenon of thin walled struc-
tured. For instance, the plastic buckling of tubes in bending, cou-
pled with the so-called ovalization phenomenon, can be modeled
with such a hardening–softening moment curvature relationship
(Calladine, 1982; Kyriakides and Ju, 1992; Yu et al., 1993; Reid
et al., 1998; Kyriakides et al., 2008; Poonaya et al., 2009). The
bending response of steel thin-walled members can also experi-
ence a softening stage induced by the local buckling phenomenon
(Mazzolani and Gioncu, 2002). The localization process in these
hardening–softening structural members has been already investi-
gated in details for bending problems, but the coupling between
softening and second-order geometrical effects at the beam scale
has not been investigated in details in the literature, to the author’s
knowledge, at least for plasticity structural systems.
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To allow for analytical calculations, a linear hardening/softening
modulus is considered in this paper for the bending moment cur-
vature constitutive law. This is in concordance with the model of
Wood (1968) in case of linear softening applied to reinforced
concrete members. Vaz and Patel (2007) also studied a bilinear
bending moment–curvature law for flexible pipes applications,
with a plasticity hardening branch. Linear hardening moment–
curvature can be also deduced at the beam cross section level from
local stress–strain relationship, as shown for instance by
Casandjian et al. (2013).

The bending behavior of such elastoplastic systems is well stud-
ied in the literature. In particular, it is shown since the seminal
work of Wood (1968) that a local elastoplastic softening
moment–curvature constitutive law leads to an unphysical elastic
unloading solution. It is now well accepted that a nonlocal model
including some additional length scales, has to be considered for
softening media (and also for softening beams). For instance,
Pijaudier-Cabot and Bažant (1987) developed a nonlocal Contin-
uum Damage Mechanics model to control the localization process
in the softening range. A lot of numerical results have been per-
formed for such nonlocal structural elements (see for instance
Jirásek and Bažant (2002)) but very few analytical results are
available for bending or buckling of nonlocal inelastic softening
elements. Such reference solutions are useful for a better under-
standing of the deep scenario of the localization process induced
by the softening part of the constitutive law.

Nonlocal plasticity can be implemented in a gradient-based or
integral-based version. The pioneer solutions for the gradient plas-
ticity models were probably first elaborated by Mühlhaus and
Aifantis (1991) and de Borst and Mühlhaus (1992) for a homoge-
neous bar under uniaxial loading, exhibiting some specific periodic
localized solutions. Later, Challamel (2003) developed a gradient
plasticity moment–curvature model, and obtained some similar
localization solutions in case of uniform bending, controlled by
the beam length scales. Challamel et al. (2008) generalized these
solutions for the non-uniform bending of gradient plasticity or
nonlocal-based softening beams. Challamel et al. (2010) also
shown the link between gradient plasticity and nonlocal integral-
based plasticity, in an archetypal elastoplastic hardening–soften-
ing beam. Polizzotto (2007) obtained some other kinds of solutions
for a gradient plasticity model with hardening. The paper of
Peerlings (2007) should be also mentioned for a theoretical analy-
sis of a gradient plasticity beam under uniform bending. More
recently, Jirásek et al. (2013) obtained some new solutions for
the axial behavior of non-homogeneous gradient plasticity soften-
ing bars.

If the bending behavior of nonlocal elastoplastic beam systems
has been now well investigated, the stability behavior of such
enriched elastoplastic systems is probably less studied. This paper
aims at developing a rational analysis of the buckling and post-
buckling behavior of some straight columns, modeled by an elasto-
plastic hardening or softening moment–curvature model. A typical
application concerned by this model is the stability behavior of
reinforced concrete column. The coupling between material insta-
bility (associated with the local softening behavior) and structural
stability has not been exhaustively explored for such structural
problems. It is worth mentioning that the buckling and post-buck-
ling behavior of a column with a bilinear moment–curvature law
(with positive hardening) has been studied by Vaz and Patel
(2007) in a geometrically exact framework. More recently,
Challamel and Hellesland (2013) investigated the buckling and
post-buckling behavior of nonlocal Continuum Damage Mechanics
columns, and used asymptotic methods to highlight the specific
imperfection sensitive phenomenon.

In this paper, the buckling behavior of a clamped column with a
free end (cantilever column) is investigated. The column is

modeled by an elastoplastic moment–curvature law with or
without gradient terms. The gradient terms have been introduced
for regularizing the softening problem which would have been not
well-posed without this enriched constitutive law. The column is
assumed to be homogeneous with a length L and with a constant
cross section. An axially centered load P acts at the top of the per-
fect column (no initial imperfection for this problem). The
deflection of the column with respect to its fundamental state is
denoted by w(x) (see Fig. 1)

2. Differential equations

2.1. Governing equation

We first start from the weak form of the equilibrium equations
via the principle of virtual work:Z L

0
Mdw00 � Pw0dw0 ¼ 0 ð1Þ

leading to the direct equilibrium equations:

M00 þ Pw00 ¼ 0 ð2Þ

It is assumed that the behavior of the column is ruled by an
elastoplastic moment–curvature relationship with a linear harden-
ing (or linear softening), see Fig. 2. In case of softening, the gradient
plasticity terms are added for restoring the well-posedness of the
evolution problem (if the regularized problem still remains well-
posed).

The constitutive law at the cross section level may be written
from the bending moment–elastic curvature relationship:

M ¼ EIðw00 � vpÞ ð3Þ

where the curvature v is related to the second-order derivative of
the deflection v ¼ w00, vp is the plastic curvature, and EI is the elastic
bending stiffness.

The loading function combines a gradient plasticity model with
a nonlocal integral-based plasticity model and is given by the fol-
lowing differential equation:

M � l2
c M00 ¼ Mp þ kp vp þ a2v00p

� �
ð4Þ

This loading function depends on two length scales, namely lc
and a. The gradient plasticity model is found for the specific case
lc = 0. Mp is the plastic moment; kp positive corresponds to a posi-
tive hardening behavior, whereas a negative value of kp corre-
sponds to a softening behavior. The perfect elastoplastic behavior
is associated with a vanishing plastic modulus kp = 0. Such kind
of nonlocal plasticity laws has been successfully used by
Challamel et al. (2008) or Challamel et al. (2010) for accurate com-
putation of the bending collapse of elastoplastic beams. This model
has been shown to be cast in a so-called micromorphic plasticity
framework (see Forest (2009) or Challamel et al. (2010)). It is
known that nonlocal plasticity can accurately control the post-
failure process in softening three-dimensional media (Jirásek and
Bažant, 2002). It has been shown that the nonlocal plastic loading
function considered in Eq. (4) can be used for softening moment–
curvature, in order to avoid localization in infinitely small areas
along the beam (Challamel, 2008). Such kind of implicit gradient
dependent yield condition is also generally considered by
Aifantis (2011) for other applications at the material scale.

2.2. Elastic buckling and elastoplastic post-buckling

For sufficiently small curvatures after the buckling of the elasto-
plastic column, the column remains in its elastic phase, meaning
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