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a b s t r a c t

This investigation is concerned with a mathematical analysis of an elastic circular cylindrical pile embed-
ded in a transversely isotropic half-space under lateral dynamic excitations. A combination of time-har-
monic horizontal shear force and moment are applied at the top end of the pile. The boundary value
problem is formulated by decomposing the pile-medium system into a fictitious pile and an extended
transversely isotropic half-space. A Fredholm integral equation of the second kind governs the interaction
problem, whose solution is then computed numerically. Selected results for dynamic compliance bending
moment, displacement and slope profiles are presented for different transversely isotropic half-spaces to
portray the influence of degree of anisotropy of the medium on various aspects of the solution.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical response of anisotropic materials under differ-
ent external and internal loads has attracted increasing attention
in recent years, chiefly because of the limitations in using isotropic
theories to dealing with man-made materials such as composites
and natural materials such as deposit soils and rocks. The study
of load transfer in transversely isotropic media is one of the prom-
inent research areas in this category, with relevance to a variety of
subjects such as geomechanics and material science. On the analyt-
ical approaches for the solid mechanics boundary value problems,
researchers have begun to address the influence of degrees of
anisotropy. For instance, in the context of rigid inclusion and crack
problems, Selvadurai (1980) investigated the asymmetric static
deformation of an infinite transversely isotropic medium contain-
ing a rigid disc as inclusion. The corresponding cases of an elliptical
inclusion, penny-shaped cracks have also been examined as in
Selvadurai (1984), and Rahman (1999, 2002). The problem of a cir-
cular cylindrical inclusion in a transversely isotropic solid was also
investigated by Hasegawa and Kisaki (2003). On the dynamic
counterpart of the foregoing class of problems, Hanson and Puja
(1997) and later Rahimian et al. (2006) studied a transversely
isotropic half-space subjected to a forced constant amplitude
torsional motion of a rigid circular disc bonded to the surface of
the medium. The interaction problem of a rigid embedded disc

under either static or time-harmonic loads in a transversely isotro-
pic medium was studied in Katebi et al. (2008), Eskandari-Ghadi
and Ardeshir-Behrestaghi (2010) and Eskandari-Ghadi et al.
(2010, 2011, 2013) for different boundary conditions. Eskandari-
Ghadi et al. (2013) have made a detailed analytical investigation
for a circular crack buried in a transversely isotropic half-space
subjected to mono-harmonic force in the first mode. They have
degenerated their solution for a static case, and for a full-space
in dynamic case. In the field of soil-structure interaction involving
transversely isotropic media, several attempts have also been
made. For instance, dynamic solutions for the displacement of a
transversely isotropic stratified medium with a rigid base were
reported by Waas et al. (1985). Wang and Rajapakse (2000) applied
a boundary element method to study the dynamic response of rigid
cylindrical and hemispherical foundations in transversely isotropic
half-space. The same problem was later pursued by means of an
approximate regularized indirect BEM by Barros (2003). Following
the approach, Barros (2004) considered the soil–pile interaction
problem in a transversely isotropic medium by replacing the pile
as a series of one dimensional beam elements, while the soil
response was formulated in an integral sense analogous to an indi-
rect boundary element method. In his definition of soil’s influence
functions, fictitious force distributions over a cylindrical surface
element were assumed to be constant depthwise in the vertical
direction with a sinusoidal variation in the angular direction, and
the coupling between the FEM and BEM models was enforced at
the midpoint of the beam elements. As a result of the dissimilar
discretization and representation of the pile and the soil, however,
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there is an inherent displacement incompatibility between the pile
and the soil over the length of the embedment. Recently, Amiri-
Hezaveh et al. (2013) have found the impedance functions in any
direction for a rectangular rigid foundation bonded on a multi-lay-
ered transversely isotropic half-space, where they have analyti-
cally separated the effects of SH-wave from both P- and SV-waves.

Since the soil has to be considered as a three-dimensional con-
tinuous domain and the pile has to be treated at a minimum as a
one–dimensional structural medium, rigorous analysis of soil–pile
interaction has been difficult to achieve in applied mechanics. With
the increasing recognition that the isotropic assumption for the
soil may not be compatible with the conditions of many natural
deposits as well, there is a need to address this class of load-trans-
fer problems in the context of an anisotropic medium as well. By
means of a variational boundary integral equation statement, for
example, Rajapakse (1988,) suggested an approximate scheme to
tackle a related bar-soil interaction problem, which was general-
ized in Rajapakse and Wang (1990) to account for some static load
conditions. By assembling dynamic stiffness matrices of a discret-
ized soil, Liu and Novak (1994) and later, Tiesheng (1997) pre-
sented a finite element model for the interaction problem of a
pile and a transversely isotropic layered medium. Considering
the transverse isotropy of the soil, an analytical method for tran-
sient torsional dynamic response of a pile embedded in a saturated
medium was given by Chen et al. (2007). Wang et al. (2009) also
considered an analogous study for an end-bearing pile.

Allowing more rigorous treatment of cylindrical embedments in
the framework of classical elastostatics, Muki and Sternberg (1969,
1970) developed the idea of using an extended half-space with a
one-dimensional fictitious reinforcement as an approximate repre-
sentation of an axially-loaded cylindrical pile of finite or infinite
length that is bonded to a hole in the medium. Extending the con-
cept to the lateral pile problem involving an arbitrary combination
of lateral horizontal forcing, shear force and bending moment in
both static and dynamic conditions, Pak and Jennings (1987) and
Pak (1989) showed that the asymmetric soil–pile interaction prob-
lem can be reduced to a compact Fredholm integral equation of the
second kind. While exact formulations have since been developed
in Pak and Ji (1993) and Abedzadeh and Pak (2004), the simplicity
of Muki and Sternberg’s extended half-space concept has attracted
numerous followings for the isotropic solid or porous media (e.g.,
Apirathvorakij and Karasudhi, 1980; Flowler and Sinclair, 1978;
Karasudhi et al., 1984; Rajapakse and Shah, 1987; Rajapakse and
Shah, 1987; Selvadurai and Rajapakse, 1987; Zeng and Rajapakse,
1999). Among these studies, various attempts have also been made
to improve the model. For instance, Rajapakse and Shah (1987,) and
Pak (1989) adopt non-uniform body-force fields to modify the dis-
placement compatibility of the fictitious reinforcement and the
extended half-space. Using the fictitious bar-extended half-space
model, Lagrange’s equation concept and a set of exponentially
decaying functions with respect to depth, Rajapakse and Shah
(1987,) presented a numerical scheme for the boundary value prob-
lem. Comparing the results with prior discretization methods used
by Sen et al. (1985) and Flowler and Sinclair (1978), Rajapakse and
Shah (1987) stated that the foregoing methods do not properly
account for inertia component of the bar-half space system. This
deficiency is considered due to two major points: (1) The fact that
the mass density cannot be negative. If the mass density is negative
then the inherent mathematical properties of the equations of
motion is lost; (2) The displacement incompatibility of the fictitious
bar and the extended half-space. However, in their development,
Rajapakse and Shah (1987,) modified the technique by assuming
a non-uniform body force field acting on the extended half-space.
Rajapakse and Shah (1987,) also introduced frequency ranges for
each loading case wherein the use of fictitious bar-extended
half-space model yields results with reasonable accuracy.

Aimed to provide a reference solution to the dynamic laterally-
loaded pile problem in a transversely isotropic half-space, this
paper is concerned with the development of a rigorous mathemat-
ical solution in the spirit of the extended medium approach. Fol-
lowing the compact and elegant formulation of Pak and Jennings
(1987) and Pak (1989), a set of influence functions corresponding
to a buried time-harmonic horizontal body-force field which can
represent more closely the high sectional rigidity of a pile is
employed to represent the soil reaction from low-frequency pile
motions. The problem is mathematically reduced to one unknown
that is governed by a single Fredholm integral equation of the
second kind, thereby maximizing analytical consistency while
minimizing multivariate discretization errors in many past numer-
ical studies. Selective numerical results are presented and
discussed to illustrate the material anisotropy effects on different
aspects of the lateral dynamic soil–pile interaction problem,
including the frequency-dependent pile-head compliance
functions which are of most common engineering interest. As a
verification of the solution, the results are degenerated for the sta-
tic case and compared with the existing solutions for isotropic
materials as in Pak and Jennings (1987) and Pak (1989).

2. Mathematical formulation

A mathematical formulation is proceeded in this section for the
dynamic interaction problem. Following the procedure by Pak and
Jennings (1987), we introduce fo; x1; x2; x3g as a rectangular Carte-
sian coordinate frame which spans 3D-space �E with the unit based
vectors~e1;~e2 and~e3. In this investigation, a circular cylindrical elas-
tic pile P of length l and radius a, which is partially embedded in a
transversely isotropic half-space is under consideration (Fig. 1).
The isotropic planes of the embedding medium are parallel to
x1 � x2 plane with Young’s modulus E and Poisson’s ratio m, and
the elastic coefficients in any plane parallel to the x3�direction,
which is perpendicular to the isotropic planes are denoted by
E0; m0 and G0, where G0 is the shear modulus. In addition, the longi-
tudinal centroidal axis of the pile is considered to be coincident
with x3�axis and a combination of time-harmonic lateral force
~V ¼ V0eixt~e1 and bending moment ~M ¼ M0eixtð�~e2Þwith frequency
x are acting in the x1 � x3 plane at the top end of the pile.

By the foregoing description, the half-space can be denoted as
H ¼ f~xj~x 2 �E; x3 > 0g, the pile region occupied by the pile as
D ¼ f~xj~x 2 �E; x2

1 þ x2
2 < a2;0 < x3 < lg and the open cross section of

the pile located at the depth x3 ¼ s as Ps ¼ f~xj~x 2 D; x3 ¼ s < lg.
In the present treatment, as in Pak and Jennings (1987) and also

Fig. 1. Geometry of pile and embedding medium.
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