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a b s t r a c t

The paper focuses on the comparison of two approaches used for calculation of the effective elastic prop-
erties of particulate composites: the dipole moments representation and the technique based on property
contribution tensors. Its specific goal is to bridge the gap between the two methods and to identify the
key microstructural parameters affecting overall elastic stiffness of heterogeneous materials. The basic
concepts of the homogenization theory including a consistent way of introducing the macroscopic field
parameters are discussed and clarified. We provide a detailed comparison of the analytical expressions
for the dipole moment tensors obtained by the multipole expansion method and for the stiffness
contribution tensors and show that they coincide.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper we discuss the connection between two
approaches that can be applied to calculate effective elastic
properties of heterogeneous materials: (1) the multipole expansion
and (2) the property contribution tensors. It can be considered as
extension of the work of the present authors (Kushch and
Sevostianov, 2014), where conductive properties were discussed,
to the case of effective elastic properties.

Connection between the compliance contribution tensors and
far-field asymptotes received some attention in literature. Jasiuk
et al. (1994) and Jasiuk (1995) considering 2-D polygonal holes,
made an observation that the far-field asymptotic of the hole-gen-
erated fields fully determines the compliance contribution of the
hole.

Actually, sufficiency of the far-fields for proper description of
the contributions of the inhomogeneities to effective properties
extends to the general 3-D case as shown by Sevostianov and
Kachanov (2011). The extra overall strain due to the presence of
an inhomogeneity in reference volume V is given by the
well-known expression in terms of an integral over the boundary
@V (Hill, 1963):

De ¼ 1
2V

Z
@V
ðDunþ nDuÞdS; ð1:1Þ

where Du are extra displacements due to the inhomogeneity and ni

is the outward unit normal to @V . Volume V can be arbitrarily large,
hence the far-field asymptotics of Du is sufficient for determination
of the compliance contribution of an inhomogeneity. Formula (1.1)
gives the compliance contribution of an inhomogeneity in terms of
experimentally measurable quantities – displacements of the
specimen boundaries; in this context, volume V must be large to
neglect the inhomogeneity-boundary interaction thus making the
far-field asymptotic necessary.

The far-field asymptotics of elastic field is shape-dependent,
even in cases when the inhomogeneity compliance contribution
is isotropic (for example, when the inhomogeneity shape has the
symmetry of any equilateral polygon, except square).This is in con-
trast with shape independence of the inhomogeneity contributions
to the physical properties characterized by second-rank tensors
(see Kushch and Sevostianov, 2014), such as the conductive or
dielectric ones: for them, the isotropic case is characterized by
only one constant, hence any isotropic – in regard to these
properties – shape (such as any equilateral polygon including
square) can be replaced by a circle of appropriate radius.

The structure of the far-field and its shape dependence can
be clarified using the multipole expansions (Kushch, 2013).
Batchelor (1974) suggested to calculate average stress – and thus
the effective stiffness of composite – in terms of the induced dipole
moments of particles populating the representative volume
element (RVE). The elastic dipole moment is formally defined (see,
for example, Vakulenko and Kosheleva, 1980; Kosheleva, 1983)
as the coefficient in the multipole series expansion of displacement
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disturbance field associated with the dipole term. Multipole expan-
sions can be illustrated on a system of forces distributed in volume
V . At distance r that is much larger than linear dimensions of V , elas-
tic fields can be represented as a sum of terms: the first one is gener-
ated by the principal vector of forces (it decreases as r�2 for stresses
and r�1 for displacements); the second one – by dipoles, i.e. pairs of
equal and opposite point forces applied at closely spaced points (it
decreases as r�3 and r�2); the third one – by quadrupoles – closely
spaced dipoles of opposite signs (it decreases as r�4 and r�3), etc.
The first term (generated by the principal vector) is a dominant
one. Such expansions can be extended from a discrete system of
forces to a distribution of stresses (or strains) in V: the role of the
principal vector is played then by the integral

R
V rijdV and higher

order moments take the form
R

V xkrijdV ,
R

V xkxlrijdV , etc. We refer
to the book of Lur’e (1964) for the case of discrete system of forces
and the book of Kanaun and Levin (2008) for a more general form
of distributions.

The connection between the property contribution tensors and
multipole expansion method is not yet well recognized and
understood. This work aims at establishing the connection between
two different approaches to the problem of homogenization
and to identify and discuss the key microstructural parameters
affecting overall elastic properties of heterogeneous materials. It
follows the idea proposed by the present authors (Kushch and
Sevostianov, 2014) for overall conductivity (thermal or electric)
of heterogeneous materials.

2. Background material

For readers convenience, in this section we briefly outline the
concepts of (1) property contribution tensors and (2) the multipole
expansion. These topics, being known for several decades, are not
widely used in the problems of homogenization.

2.1. Compliance and stiffness contribution tensors

Compliance contribution tensors have been first introduced by
Horii and Nemat-Nasser (1983) for pores of ellipsoidal shape
(explicit formulas connecting compliance contribution tensor and
Eshelby tensor for an ellipsoidal pore are given in the appendix
of the mentioned paper). Components of this tensor for two-
dimensional pores of arbitrary shape were given by Kachanov
et al. (1994) and for ellipsoidal inhomogeneities – by Sevostianov
and Kachanov (1999). Connection between compliance and stiff-
ness contribution tensors has been discussed by Sevostianov and
Kachanov (2007b). The significance of these tensors for the homog-
enization theory is that their sum is the proper microstructural
parameter in whose terms the considered effective property has
to be expressed. In other words, it is these tensors that have to
be summed up, or averaged over a RVE to calculate overall elastic
properties.

In the context of linear elastic properties, the average, over rep-
resentative volume V strain can be represented as a sum

hei ¼ S0 : r1 þ De; ð2:1Þ

where S0 is the compliance tensor of the matrix and r1 represents
the homogeneous boundary conditions (tractions on @V have the
form tj@V ¼ r1 � n where r1 is a constant tensor); r1 can be viewed
as a far-field, or remotely applied, stress. The material is assumed to
be linear elastic, hence the extra strain De due to inhomogeneity of
volume V1 is proportional to applied stress and compliance contri-
bution tensor is the proportionality factor in this relation:

De ¼ ðV1=VÞH : r1: ð2:2Þ

In the case of multiple inhomogeneities, De ¼ ð1=VÞ
P

iV iH
ðiÞ :

r1 so that the extra compliance due to inhomogeneities is given
by

DS ¼ ð1=VÞ
X

i

V iH
ðiÞ: ð2:3Þ

Alternatively, one can consider the extra average stress Dr due
to an inhomogeneity under given applied displacement homoge-
neous boundary conditions (displacements on @V have the form
uj@V ¼ e1 � x where e1 is a constant tensor). This defines the
stiffness contribution tensor of an inhomogeneity:

Dr ¼ ðV1=VÞN : e1; ð2:4Þ

In the case of multiple inhomogeneities, the extra stiffness due
to inhomogeneities is given by

DC ¼ ð1=VÞ
X

i

V iN
ðiÞ: ð2:5Þ

The property contribution tensors, obviously, have the same
rank and symmetry as the tensors characterizing the property: H
and N are fourth-rank tensors with ijkl components symmetric
with respect to i$ j, k$ l and ij$ kl.

The H- and N-tensors are determined by the shape of the
inhomogeneity, as well as properties of the matrix and of the
inhomogeneity material.

Remark. The property contribution tensors defined via Eqs. (2.2)
and (2.5) do not depend on the size of inhomogeneity. This
definition is different from those used, for example, by Sevostianov
and Kachanov, 2002, where multiplier ðV1=VÞ was absorbed by the
tensors. The present definition has a number of advantages. For
example, the problem of distinction between infinite cylinder and
a needle is irrelevant. The difference between these two shapes is
in the multiplier ðV1=VÞ only.

The compliance and stiffness contribution tensors are
also affected by elastic interactions. In the non-interaction
approximation, they are taken by treating the inhomogeneities as
isolated ones. These tensors for a given inhomogeneity are
interrelated, as follows. The overall compliance of certain
volume containing one inhomogeneity S0 þH is an inverse of its
stiffness tensor C0 þN, i.e. their product equals the fourth-rank
unit tensor implying that N ¼ �C0 : H : C0 � N : H : C0. The
H- and N-tensors scale as the ratio l3

=V that can be made
arbitrarily small by enlarging V . Hence the second term can be
neglected so that

N ¼ �C0 : H : C0 ð2:6Þ

or, in the case of the isotropic matrix,

�Nijkl ¼ k2
0Hmmnndijdkl þ l2

0Hijkl þ k0l0ðdijHmmkl þ dklHmmijÞ; ð2:7Þ

where k0 and l0 are Lame constants of the matrix.
For an ellipsoidal inhomogeneity, compliance and stiffness

contribution tensors can be explicitly expressed in terms of Hill’s
tensors Q and P (Walpole, 1966) or in terms of Eshelby’s tensor s
(given for example in book of Mura, 1987) and, therefore, in terms
of ellipsoid geometry. For compliance contribution tensor, one can
write (Sevostianov and Kachanov, 1999):

H ¼ ½ðS1 � S0Þ�1 þ Q �
�1
: ð2:8Þ

where S1 is compliance of the inhomogeneity material. In the case
of a pore, H ¼ Q�1. Similarly, the stiffness contribution tensor is
obtained as

N ¼ ½ðC1 � C0Þ�1 þ P�
�1
: ð2:9Þ
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