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An axisymmetric elastostatics problem for a penny-shaped crack placed in the middle of a inhomoge-
neous (FGM) elastic layer is considered. It is assumed that the elastic modulus of the layer varies through
the thickness symmetrically with respect to the crack plane. Several specific distributions of the moduli
variations have been analysed. We report a semi-analytical approximate solution for the determination of
the stress intensity factor for the distributions considered. The obtained solution is accurate enough and
can be applied in engineering applications for the analysis of crack propagation in FGM and hydrofracture
growth in elastic reservoirs.
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1. Introduction

The work is aimed at investigation of the fracture characteris-
tics of elastic materials with inhomogeneous layers weakened by
cracks. The classical problem for the disk-like crack in homoge-
neous isotropic elastic medium was studied (Sneddon, 1946) by
the method of dual integral equations and (Sack, 1946) with the
use of spherical harmonic functions. For two-dissimilar media
the problem with an interface crack has been studied in a number
of studies, among them in Arin and Erdogan (1971), Erdogan
(1965), Erdogan and Arin (1972), Kassir and Bregman (1972),
Lowengrub and Sneddon (1972), and Willis (1972).

The development of advanced materials, such as functionally
graded materials, FGM, necessitates investigation of fracture prop-
agation in media with non-uniform elastic properties. Particular
formulations for FGM layers with continuous variations of elastic
properties have been considered by Selvadurai (2000), for the case
when the shear moduli of the bonded half-spaces vary in
accordance with the exponential law G(z) = G; + G,e*** (where
the z-axis is perpendicular to the interface and the parameter ¢
characterises the rate of exponent decay/grow). The disk-like crack
at a bonded plane (the interface between two half-spaces) with
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localised elastic inhomogeneity has been considered and the mode
[ stress intensity factors for different shear moduli distributions
were calculated for the case of uniform remote tension applied
perpendicular to the crack plane. The method used has been based
on the Hankel transform followed by numerical solving a system of
the Fredholm equation of the second kind.

It should be noted that the exponential form for elastic moduli
is convenient for mathematical manipulations, however other
forms present certain interest as for FGM as in other applications,
for instance (Mendelsohn, 1984) for investigations of hydrofrac-
ture development (Savitski and Detournay, 2002) in inhomoge-
neous reservoirs surrounded by the rock layers with different
(but constant) elastic properties. Thus, geological observations of
Bazhenov shale formation structures (e.g. Strahov, 1970) and lab
tests of velocity anisotropy of different shale formations (e.g.,
Vernik and Liu, 1997) demonstrate diversity in elastic moduli
through the layer thickness. For the plane case such formulations
are found, e.g., in Erdogan and Gupta (1971a,b) and more general
in Delale and Erdogan (1988); for penny-shaped cracks in dissim-
ilar layer one can mention Arin and Erdogan (1971). This study
partly employs the above-mentioned formulations but assumes
that the layer is spatially inhomogeneous through its thickness
and deals with a mode I penny-shaped crack.

The lack of general analytical solutions for the problems involv-
ing cracks in functionally graded materials is emphasised by
Eischen (1987). It should be noted that the methods of contact


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.10.010&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.10.010
mailto:saizikovich@gmail.com
http://dx.doi.org/10.1016/j.ijsolstr.2014.10.010
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

130 S.M. Aizikovich et al./International Journal of Solids and Structures 53 (2015) 129-137

mechanics for FGM can also be applied for the crack problems. For
instance, one can use the piecewise linear approximation of elastic
moduli for constructing the kernel transform as suggested (Ke and
Wang, 2007; Liu et al., 2008) for the contact problems for half-
space and half-plane with arbitrary variations of elastic properties.
We will further expand the techniques developed in a number of
previous studies (Aizikovich and Alexandrov, 1984; Aizikovich,
1995; Aizikovich et al., 2002; Aizikovich et al., 2011; Vasiliev
et al., 2012) for contact problems for the case of a penny-shaped
crack located within a functionally graded layer. We construct a
semi-analytical solution that depends on a single dimensionless
parameter characterising the ratio of the crack radius to the layer
thickness and examine the accuracy of such approximate solution.
The analysis is conducted for a soft layer, although no restrictions
is imposed for the case when the layer is stiffer that the
surrounded media.

2. Formulation of the problem

Let us consider a mode I disk-like crack of certain radius R in
isotropic inhomogeneous space. The crack lies in the plane z =0
of the cylindrical coordinate system (r,¢,z) and its centre is
located at the origin.

It is assumed that the elastic modulus of the space is an even
function of z of the following form

f@), 0<lzl<H
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1, |7>H (1.1
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where f(z) is an arbitrary function (continuous or piecewise contin-
uous), H is the thickness of the inhomogeneous layer and E, is the
modulus of the material outside the layer, see Fig. 1.

Additionally the following conditions are satisfied to provide
positiveness of Young’s modulus
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Here G(z) is the shear modulus, A(z) and M(z) are the Lame coeffi-
cients, v(z) is Poisson’s ratio of the inhomogeneous spaces, c;, ¢, are
certain constants.

Let us further analyse the case when the crack surfaces are
loaded by normal pressure p(r) > 0. Given symmetry of the elastic
properties with respect to the z-axis and the loading conditions
one can suggest that the stress/strain/displacement fields are inde-
pendent of the angular coordinate ¢, which leads to the following
2D axisymmetric boundary value problem for the half-space

T(r,0) =0, 0<r<oo
0.(r,0) = —p(r), 0<r<R w(r,0)=0, r>R

where a,(r,z), t.(r,z) are the normal and shear components of the
stress tensor respectively and w(r,z) is the normal component of
displacements. It is also assumed that the displacements and the
stresses are continuous across the planes |zl =H and vanish at
infinity.

It has been shown (Aizikovich and Alexandrov, 1984) that under
conditions (1.2) the following relationship between the normal
stresses and the normal displacements on the surface of the half-
space (z = 0) is satisfied

w(r,0) = / q(p)pdp / LyJo(yp)o(yr)dy

(1.3)
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Here J,(r) is the Bessel function and the function A is defined in
(1.2), y is the dimensional parameter of the Hankel transform.

The function L(y) is found numerically by the method of
modulating functions, detail in Babeshko et al. (1987). It has the
following asymptotics as shown by Aizikovich and Alexandrov
(1984) (provided that the conditions specified by Eqgs. (1.1) and
(1.2) are valid)

L(y)=A+Bjy|+0(y*), 7—0 (1.5)
L(y)=1+Dp[" +0(y?),

where A = A(0)A™'(|H|) and B, D are constants. It should be noted
that for a multilayer media this function possesses the following
properties (Aizikovich and Alexandrov, 1982)
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and h; is the thickness of the upper layer, E; and the Young moduli
and the Poisson’s coefficients of the j™ layer respectively.

It is evident that the second terms in (1.6) and (1.8) are different
at o — oo, which emphasise the difference in solutions of the inte-
gral equations for FGM and layered media. The properties (1.5) and
(1.7) mean that the value L(0) does not depend on the variation of
the Lame coefficients but rather determined by their values at z=0
and |z| =

Using the approach (Ishlinsky, 1986) and taking into account

(1.3) one can present (1.4) in the form

[ oo [ gty = -4 Opn), 0<r <R
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where §(r) = —w(r, 0) is the function that describe the shape of the
crack (crack opening displacements, COD). This function should
satisfy the following condition

S(R)=0 (1.10)

By taking into account the above relationships one can reduce
the problem to the following dual integral equations for an auxil-
iary function A;(p)

{ o ThAT(Brydp=A"'(O)p7, 0<T<1
Jo  M(B)BJ,(Br)dp =0,

Here the new unknown function A;(p) is linked with the unknown
crack opening displacements by the following relationship
=[5 Ar(o)fo(or)der, and J;(r) is the Bessel function of the first
order In the right hand side of (1.11) we introduce a dimensionless
load p* as detailed in Appendix A. Further the asterisk at the
notation for the dimensionless loads will be removed for
compactness.
It is convenient to denote the reciprocal of L(u) as F(u) in the
kernel of (1.8) and bear in mind the asymptotic behaviour of F(u)
yielding from (1.5) and (1.6)
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