
Adhesive contact analysis for anisotropic materials considering surface
stress and surface elasticity

Takao Hayashi ⇑, Hideo Koguchi
Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan

a r t i c l e i n f o

Article history:
Received 7 April 2014
Received in revised form 14 September 2014
Available online 1 November 2014

Keywords:
Adhesion analysis
Anisotropic material
Surface stress
Surface elasticity
van der Waals force

a b s t r a c t

In this study, an adhesive contact problem for anisotropic materials is analyzed by considering surface
stress and surface elasticity. The displacement field on the surface is obtained from the surface Green’s
function considering the surface stress and surface elasticity. The displacement due to the adhesive force,
i.e., the van der Waals force, calculated from the Lennard–Jones potential is used in the analysis. The
adhesive force is calculated from the distance between two surfaces. First, an adhesive contact problem
of a rigid spherical indenter and an isotropic substrate with various material properties is analyzed under
a condition in which no surface mechanical property is considered, and the results are compared with the
Johnson–Kendall–Roberts theory in order to validate the calculation algorithm of the analysis. Next, a
substrate with orthotropic properties is subjected to adhesive contact analysis. When the elastic modulus
in the normal direction to the substrate surface increases, the maximum adhesion force increases, similar
to the case of the isotropic substrate. However, when the elastic modulus in the tangential direction of
the substrate surface is varied, the maximum adhesion force does not vary much. Finally, an anisotropic
half-substrate is subjected to adhesive contact analysis considering the surface mechanical property. This
analysis reveals that when the values of the surface mechanical property are varied, the maximum
adhesion force changes, similar to the case of varying the elastic modulus in the tangential direction of
the surface.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent technological developments have led to the requirement
of measuring the physical and chemical properties of a material
surface. Specifically, it is necessary to measure the material
properties in the nanoscale region for manufacturing extremely
sensitive sensors. Gibbs (1928) introduced the concept of surface
stress in solids. According to this concept, the energy of atoms near
the free surface is different from that in bulk. Surface stress, related
to surface energy, affects the mechanical behavior of the material
surface in the nanoscale region. Gurtin and Murdoch (1975,
1978) developed a mathematical framework for studying the
mechanical behavior of material surfaces. This framework takes
into account the surface stress within continuum mechanics.
Renault et al. (2003) showed that the surface of gold thin film is
elastically stiffer than that of bulk gold. Muller and Saul (2004)
reviewed the effects of surface stress and surface elasticity on
surface phenomena in surface physics.

Nanoindentation and scanning probe microscopy (SPM) are
used to estimate material properties on the nanoscale. These
techniques can be used to evaluate material properties on the
nanoscale on the basis of the relationship between the approach
of an indenter and the contact force or adhesion force. Hertz (see
Johnson, 1985) derived the contact theory between two elastic
spherical bodies. Further, Bradley (1932) deduced that the adhe-
sion force between two rigid spheres is 4pxR, where x is the work
of adhesion and R = R1R2/(R1 + R2), R1 and R2 being the radii of the
two rigid spheres. Johnson et al. (1971) derived an adhesion theory,
i.e., the Johnson–Kendall–Roberts (JKR) theory, between elastic
spheres by using the Hertz theory and surface energy. In the JKR
theory, the adhesion force outside of the contact area is assumed
to be negligible. Derjaguin et al. (1975) derived an adhesion theory,
i.e., the Derjaguin–Muller–Toporov (DMT) theory, by considering
the molecular force between two surfaces. The pull-off forces
according to the JKR theory and DMT theory are 1.5pxR
and 2pxR, respectively. Tabor (1977) showed that the JKR theory
and DMT theory represent two extreme cases of adhesion.
Attard and Parker (1992) and Greenwood (1997) analyzed
adhesion between an elastic sphere and a flat surface by using
the van der Waals force obtained from the Lennard–Jones potential
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function. Recently, Medina and Dini (2014) investigated the
adhesion problems of a rough surface by using the Lennard–Jones
potential function. Further, Yamamoto et al. (2013) analyzed the
adhesive contact between a cylinder and a rigid substrate by using
the boundary element method (BEM). In recent years, contact and
adhesive contact analyses of isotropic materials with surface
properties have been performed. Koguchi (2005) solved the contact
problems of an indenter and the substrate of an isotropic material
in consideration of the surface energy and surface stress.
Pinyochotiwong et al. (2013) analyzed the contact problem of an
axisymmetric rigid indenter and an isotropic half-space by
employing the Gurtin–Murdoch model for surface elasticity.

The mechanical behavior of nanoscale structures is related to
the anisotropy of crystal structures in a substrate. The Stroh’s for-
malism is frequently used in the analysis of anisotropic materials
(Ting 1996). Ting and Lee (1997) and Yang and Pan (2002) derived
Green’s functions for general anisotropic elastic materials based on
the Stroh’s formalism. Similarly, Koguchi (2008) derived a surface
Green’s function for anisotropic materials considering the surface
stress and surface elasticity. The displacement field obtained using
the Green’s function considering the surface stress and surface
elasticity exhibited good agreement with that obtained by the
molecular dynamics (MD) method. For the adhesive contact analy-
sis of anisotropic materials, Chen and Gao (2007) developed an
adhesive contact model for a rigid cylinder with a transversely iso-
tropic material. They assumed that the contact region is symmetric
with respect to the center of the cylinder. Further, Yao et al. (2009)
developed a contact model without any assumption of the symme-
try of the contact region. Hayashi et al. (2013) performed contact
analysis of anisotropic materials considering the surface stress
and surface elasticity; they used the surface Green’s function
derived by Koguchi and the conjugate gradient method for this
analysis. With the aim of the adhesion analysis of anisotropic
materials, Borodich et al. (2014) analyzed the adhesion problem
of a transversely isotropic material. In their analysis, the distance
between the two surfaces was described by a power-law function
and the JKR theory was considered as an adhesion problem of a
power-law indenter with an index of 2. Barber and Ciavarella
(2014) derived a solution for the adhesive contact problem of
two spherical indenters to consider the effect of anisotropic elastic-
ity. They assumed that the contact area between the two indenters
is elliptical and that the energy release rate at the contact edges on
each axis is equal to the interface energy. However, the shape of
the contact area between fully anisotropic spheres is not elliptical.
For example, Hayashi et al. (2013) demonstrated that the contour
plot for the displacement of the Cu(111) surface under a concen-
trated force is hexagonal in shape.

To the best of our knowledge, only a few studies have been con-
ducted on adhesive contact problems of fully anisotropic materials
considering surface properties. In the present study, we analyze
the adhesive contact problem between rigid spherical indenter
and anisotropic elastic half-space considering surface stress and
surface elasticity. To calculate the surface displacement for the
adhesive force, Green’s function derived by Koguchi is used. We
developed an iterative method in the adhesive contact analysis
considering van der Waals force. We also conduct an adhesive con-
tact analysis of a rigid spherical indenter against the flat surface of
an anisotropic substrate for the adhesion and separation processes.

2. Theory and analysis method

2.1. Green’s function for anisotropic material considering surface stress
and surface elasticity

A more detailed derivation of the surface Green’s function
considering the surface stress and surface elasticity can be found

in Koguchi (2008). In the present study, we outline this derivation
of the surface Green’s function.

The equilibrium equation for anisotropic materials can be
expressed in terms of the displacement ui as follows:

Cijkl uk;lj ¼ 0 ð1Þ

where Cijkl is the elastic stiffness. The general solution of the
equilibrium equation, Eq. (1), can be expressed as follows by
applying two-dimensional (2D) Fourier transform:

ûðg1;g2; x3Þ ¼ aðg1;g2Þe�ipqx3 ð2Þ

where g1 = qn1, g2 = qn2, q is a parameter related to the Fourier
transform and greater than or equal to zero, and p and a satisfy
the following eigenrelation:

fQ þ pðR þ RTÞ þ p2Tga ¼ 0 ð3Þ

where, Qik = Cijksnjns, Rik = Cijksnjms, and Tik = Cijksmjms, with n =
[n1, n2, 0] = [cosh, sinh, 0]T and m = [0, 0, 1]. Next, the boundary
condition is expressed using an equilibrium relationship among
the surface stress tensor sab, the bulk stress rij, and the traction
vector ti as follows:

On the tangential plane of the surface:

riami � sab;b ¼ ta ð4Þ

In the normal direction to the surface:

ri3mi � slbjlbm3 ¼ t3 ð5Þ

where jlb ¼ @2u3=@xl@xb

��
x3¼0 is the curvature tensor of the

deformed surface; m1 and m2 are unit vectors in the tangential direc-
tion of the surface; m3 is the unit normal vector of the surface;
a, b, l = 1, 2 correspond to the rectangular coordinates on the sur-
face; and i = 1, 2, 3 corresponds to the rectangular coordinates.

The surface elastic modulus dabck relates the surface stress to the
surface strain:

sab ¼ s0
ab þ dabckes

ck ð6Þ

where s0
ab is the surface stress tensor for zero surface strain induced

by an external load and es
ck is the surface strain. The surface stress

depends linearly on the surface strain. In the present study, the
surface stresses and surface elastic moduli are calculated using
the MD method. The calculation method is explained in Section 3.3.

By substituting Eq. (6) into Eqs. (4) and (5), we can express the
boundary condition in matrix form as follows:

t̂ ¼ �iqðbþ iqFÞe�ipqx3 ð7Þ

where

b ¼ �1
p
ðQ þ pRÞa ð8Þ

and

F ¼
d1b1knbnk d1b2knbnk 0
d2b1knbnk d2b2knbnk 0

0 0 s0
abnanb

2
64

3
75 ð9Þ

The general solution is obtained by superposing three solutions
of Eqs. (2) and (7) associated with pj and aj (j = 1, 2, 3), which are
eigenvalues and the corresponding eigenvectors, respectively, as
follows:

ûðg1;g2; x3Þ ¼ Ahe�ip�qx3 iq ð10Þ

t̂ðg1;g2; x3Þ ¼ �iqðBþ iqFÞhe�ip�qx3 iq ð11Þ

where F is a real matrix, A = [a1, a2, a3], B = [b1, b2, b3],
he�ip�qx3 i ¼ diag½e�ip1qx3 ; e�ip2qx3 ; e�ip3qx3 �, and q is a complex vector
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