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a b s t r a c t

We investigate the behavior of magnetoactive elastomers (MAEs) with periodic and random distributions
of circular and elliptical fibers. For the MAEs with periodic microstructures, we develop finite element
models and determine the local fields as well as the effective properties of MAEs with rectangular and
quasi-hexagonal unit cells. For the MAEs with random microstructures, we derive a closed-form expres-
sion for the effective response making use of a recently developed theory (Ponte Castañeda and Galipeau,
2011). In particular, we determine the responses to pure shear loading in the presence of a magnetic field,
both of which are aligned with the geometric axes of the fibers, and examine the roles of the deformation,
concentration, particle shape, and distribution on the magnetostriction, actuation stress, and the magnet-
ically induced stiffness of the composite. We show that the coupling effects are of second order in the
concentration. This is consistent with the fact that these effects are primarily the result of the interaction
between inclusions. We also demonstrate explicitly that the magnetomechanical coupling of these MAEs,
when subjected to aligned loading conditions, depends not only on the magnetic susceptibility, but also,
crucially, on its derivative with respect to the deformation. As a consequence, we find that the magneto-
elastic effects may be quite different, even for composites with similar effective susceptibilities.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetoactive elastomers (MAEs) are composite materials
exhibiting coupled magnetic and mechanical behavior. In this work
we examine typical MAEs consisting of magnetically susceptible
particles embedded in a non-magnetic soft elastomer matrix. Fre-
quently used magnetic materials include carbonyl iron and nickel;
examples of more exotic inclusions are Terfenol-D and Ni2MnGa.
MAEs are of interest because magnetic fields are capable of modi-
fying the effective stiffness of the composite and of producing mag-
netostrictive strains. Both effects take place quickly and reversibly,
making MAEs good candidates for tunable vibration dampers and
magnetic actuators.

For MAEs made with inclusion materials such as carbonyl iron,
nickel, or cobalt, which are effectively rigid compared to the elas-
tomer matrix, the principal mechanisms are magnetic torques
and magnetic interactions between particles (Jolly et al., 1996;
Bednarek, 1999; Ginder et al., 2002; Guan et al., 2008). For the par-
ticular case when the magnetic particles are aligned with the
external magnetic field, there are no magnetic torques on the

particles and the magnetoelastic effects are controlled by particle
interactions. Various approaches have been used to directly
account for particle pair forces in MAEs in the context of infinitise-
mal deformations, including the works of Borcea and Bruno (2001),
Yin and Sun (2006), and Yin et al. (2006).

Magnetic interactions in deformable elastic media can also be
accounted for, in the context of a thermodynamically consistent
formulation, by means of a free-energy function, leading to the
notion of magnetic stresses, which exist even in vacuum
(Maxwell, 1873). The pioneering works on electro- and magneto-
elastic behavior of a continuum by Toupin (1956), Truesdell and
Toupin (1960), Tiersten (1964), Brown (1966), and Maugin and
Eringen (1972) have been recently reviewed and further developed
by various authors (Brigadnov and Dorfmann, 2003; Dorfmann and
Ogden, 2004a,b; Kankanala and Triantafyllidis, 2004; Vu and
Steinmann, 2007; Bustamante et al., 2008). Making use of these
constitutive formulations, Ponte Castañeda and Galipeau (2011)
proposed a finite-strain, variational homogenization framework
to determine the total magneto-elastic stress arising in a compos-
ite material as a consequence of combined magnetic and mechan-
ical stimuli. Furthermore, for the special case of MAEs, where the
magnetic particles are rigid compared to the soft elastomer matrix,
Ponte Castañeda and Galipeau (2011) showed that the total stress

http://dx.doi.org/10.1016/j.ijsolstr.2014.04.013
0020-7683/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +972 8 6477105; fax: +972 8 6477106.
E-mail address: debotton@bgu.ac.il (G. deBotton).

International Journal of Solids and Structures 51 (2014) 3012–3024

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.04.013&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.04.013
mailto:debotton@bgu.ac.il
http://dx.doi.org/10.1016/j.ijsolstr.2014.04.013
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


can be expressed as the sum of the purely mechanical stress, which
exists in the composite when no magnetic fields are applied,
together with the Maxwell stress in vacuum and an extra magnetic
stress which is determined by the derivative of the (deformation-
dependent) magnetic susceptibility of the composite with respect
to the stretch. Applications of these results for MAEs with random
microstructures and for magnetic fields that are aligned and una-
ligned with the anisotropic axes have been given by Galipeau
and Ponte Castañeda (2012) and Galipeau and Ponte Castañeda
(2013a), respectively. The mathematically analogous case of
dielectric elastomer composites with periodic and random micro-
structures was considered by Ponte Castañeda and Siboni (2012)
and Siboni and Ponte Castañeda (2013), respectively. In addition,
deBotton et al. (2007) computed directly the macroscopic constitu-
tive relations for electroelastic composites with layered micro-
structures, taking advantage of the fact that the fields are
uniform in the layers. The stability of electroactive laminates was
considered by Rudykh and deBotton (2011). The ability to signifi-
cantly enhance the electromechanical coupling with appropriate
arrangement of the microstructure of the composite was demon-
strated in Tian et al. (2012) and Rudykh et al. (2013). Also,
Galipeau and Ponte Castañeda (2013b) have recently shown that
giant magnetostriction can be achieved in composites with her-
ringbone-type microstructures by combining the action of mag-
netic torques with soft mechanical modes of deformation in the
elastomer phase. Shear localization instabilities in layered and par-
ticulate magneto-elastic composites have been considered recently
by Rudykh and Bertoldi (2013) and Galipeau and Ponte Castañeda
(2013a), respectively. More general instabilities in the context of
layered dielectric elastomers have been considered by Bertoldi
and Gei (2011) and Rudykh et al. (2014).

Unfortunately, the set of microstructures for which exact ana-
lytical solutions can be obtained is essentially limited to materials
with layered microstructures. For magneto-elastic materials with
more general periodic microstructures, which have great potential
for enhancing magneto-elastic performance, the exact behavior
may be obtained by numerical computations. The finite element
(FE) method is usually employed (Rudykh and deBotton, 2012)
for this purpose. In this work, we pursue this approach for the cou-
pled magnetomechanical problem and construct FE models for
solving the magnetomechanical problem under finite deformations
and periodic boundary conditions. Specifically, we examine peri-
odic MAEs with (i) rectangular and (ii) quasi-hexagonal periodicity.
The FE models provide the information about the local fields,
which can be averaged over the unit cell to obtain the effective
properties of the composites. For random microstructures, we esti-
mate the effective behavior of MAEs with the homogenization-
based constitutive model recently developed in Galipeau and
Ponte Castañeda (2013a).

We define key parameters that govern the coupled magnetome-
chanical behavior of MAEs. These parameters are directly related to
the applied traction measured on the surface of the material while
accounting for the magnetic stresses outside the material. The gov-
erning parameters of the magnetomechanical coupling are evalu-
ated for MAEs with random, quasi-hexagonal, and rectangular
periodic microstructures over a wide range of concentrations and
particle aspect ratios. We demonstrate explicitly that the magneto-
mechanical coupling depends not only on the magnetic suscepti-
bility, but, more importantly, also on its derivative with respect
to deformation. Accordingly, it is demonstrated that linearly mag-
netic materials with similar susceptibilities can exhibit rather dif-
ferent magneto-elastic coupling. Moreover, we find that, for some
composites, while the magnetic induced tractions are larger, the
magnetostriction is lower and vice versa. The two competing
mechanisms that are responsible for this complex behavior are
identified and discussed. Finally, in order to shed light on the

complex dependence of the magneto-elastic coupling on the
microstructure of the composite, we provide a qualitative analysis
of this relation in terms of the magnetomechanical interactions
among the inclusions.

In this work scalars will be denoted by italic Roman, a and G, or
Greek letters, a and C; vectors by boldface Roman letters, b; sec-
ond-order tensors by boldface italic Roman letters, P, or bold face
Greek letters, �. When necessary Cartesian components will be
used; for example, Pij are the Cartesian components of P.

2. Magneto-elasticity in the quasistatic regime

Consider the quasistatic deformation of a body. In its reference
configuration, the location of each material point is defined by the
position vector X. Under the combined action of mechanical and
magnetic effects, the body deforms. In the deformed configuration,
the new position of the material points is described by x. The local
deformation is characterized by the deformation gradient
F ¼ Grad x, with Cartesian components Fij ¼ @xi

@Xj
, and is such that

J ¼ det F > 0. Conservation of mass implies that locally q0 ¼ qJ,
where q0 and q are the material densities in the reference and
deformed configurations, respectively. We also recall that the polar
decomposition of the deformation gradient is F ¼ RU, where R is
the rotation and U is the stretch tensor.

We define T and S ¼ JTF�T to be the total Cauchy and (first)
Piola–Kirchhoff stress tensors, respectively, which at static equilib-
rium and in the absence of body forces satisfy the equivalent
mechanical equilibrium conditions

div T ¼ 0 or Div S ¼ 0: ð1Þ

The operators div and Div are the divergence operators with respect
to x and X, respectively. Together with the linear momentum bal-
ance Eq. (1), the stress fields also satisfy the balance of angular
momentum. Accordingly, TT ¼ T , or equivalently, SFT ¼ FST . The
stress may be discontinuous across an interface, but must satisfy
the jump conditions

½½T ��n ¼ 0 or ½½S��N ¼ 0; ð2Þ

where n and N denote the normal to the interface in the deformed
and reference configurations, respectively.

The magnetic field is characterized by two primary magnetic
field vectors: the magnetic induction b and the magnetic intensity
h, both defined in the current configuration. In the absence of sur-
face charge and free currents, and for quasi-static conditions, they
satisfy the field equations

div b ¼ 0 and curl h ¼ 0; ð3Þ

where the curl operator is with respect to x. Alternatively, following
the work of Dorfmann and Ogden (2004a), these equations can be
written in Lagrangian form as

Div B ¼ 0 and Curl H ¼ 0; ð4Þ

where B ¼ JF�1b and H ¼ FT h are the Lagrangian counterparts of
the magnetic fields and the Div and Curl operators are with respect
to X. The corresponding jump conditions at an interface are

½½b�� � n ¼ 0 and ½½h�� � n ¼ 0; ð5Þ

or

½½B�� � N ¼ 0 and ½½H�� � N ¼ 0: ð6Þ

The relation between the magnetic fields is customarily defined
in terms of the magnetization m, such that

h ¼ 1
l0

b�m; ð7Þ
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