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a b s t r a c t

Neuber’s type methods are dedicated to obtain fast estimation of elastic–plastic state at stress concentra-
tions from elastic results. To deal with complex loadings, empirical rules are necessary and do not always
give satisfying results. In this context, we propose a new approach based on homogenization techniques.
The plastic zone is viewed as an inclusion in an infinite elastic matrix which results in relationships
between the elastic solution of the problem and estimated stress–strain state at the notch tip. Three ver-
sions of the notch correction method are successively introduced, a linear one which directly uses Eshel-
by’s solution to compute stresses and strains at the notch, a non-linear method that takes into account
plastic accommodation through a b-rule correction and, finally, the extended method that is based on
the transformation field analysis methods. All the notch correction methods need calibration of localiza-
tion tensors. The corresponding procedures are proposed and analyzed. The methods are compared on
different simulation cases of notched specimens and the predictive capabilities of the extended method
in situations where plasticity is not confined at the notch are demonstrated. Finally, the case of a complex
multiperforated specimen is addressed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Lifetime of structural components is often controlled by notches
and stress concentrations where plasticity can develop. Finite ele-
ment (FE) elastic–plastic or elastic-viscoplastic simulations of com-
plex components can still be prohibitive in a design process.
Consequently, there is a need for fast estimation methods of
plasticity at stress concentrations.

Rules applying a plastic correction to deduce elastic–plastic
stress and strain state from an elastic solution were developed to
do so. Neuber (1961) was the first to propose such a method for
uniaxial monotonic loading conditions. In case of notched bodies
in plane stress, which results in a uniaxial stress state, he postu-
lates a kind of local energetic equivalence between an elastic and
an elastic–plastic calculation:
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Later, Molski and Glinka (1981) developed a similar method assum-
ing localized plasticity at the notch tip. In that case, the strain

energy density at the notch tip can be approximated by that
obtained if the body were to remain elastic:
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Theoretical justifications of those approaches have been proposed
in the literature (Desmorat, 2002; Ye et al., 2004; Guo et al.,
1998). They were also extended and improved over the last four
decades. For example, Chaudonneret and Culié (1985) have worked
on cyclic extensions.

One of the main issues with those methods arises when dealing
with multiaxial stress states. In the general case of triaxial mechan-
ical state at the notch root, three stress components, four strain
components and four plastic strain components have to be com-
puted locally. Elastic and plastic behavior laws provide 4 + 4 scalar
equations. Consequently, three more equations are needed to solve
the problem.

In the one hand, the approach followed in Hoffman and Seeger
(1985) consists in generalizing the uniaxial Neuber rule using
equivalent stress and strain quantities instead of uniaxial values.
They add two more assumptions on (i) principal directions and
(ii) ratios between the two first principal stresses to close the prob-
lem. In a similar way, Moftakhar et al. (1994) proposed multiaxial
generalizations of Neuber’s and Molski–Glinka’s rules and assumes
equality of the contribution of each stress–strain component in the
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strain energy density between elastic and elastic–plastic
computations.

On the other hand, researchers have worked on notch correc-
tion rules for non-proportional multiaxial loadings. Barkey et al.
(1994) and Köttgen et al. (1995) incorporate directly the notch
influence into the constitutive equation. An anisotropic structural
yield surface in nominal stress space is then introduced. Another
way to treat non-proportional loading sequences consists in apply-
ing the incremental formulation of generalized Neuber’s rule as in
Buczynski et al. (2003).

However, all the above presented methods suffer some limita-
tions: (i) they are often limited to given geometries and (ii) they can-
not take plastic redistributions into account. More recently Herbland
et al. (submitted for publication) has proposed a completely new
approach based on the Eshelby inclusion theory. The notch tip is
viewed as an inclusion in an infinite matrix. The general formulation
of this method allows the possibility to address non-proportional
loading sequences for any material model. Herbland have also pro-
posed a non-linear extension to take plastic redistributions around
notch tip into account. Indeed, large plastic zones at notch tips are
still challenging issues and most of Neuber’s type methods fail in pre-
dicting plastic accomodation and ratcheting phenomenon.

The first objective of the present contribution is thus to discuss
the predicting capabilities of Herbland’s methods in non-confined
plastic zone cases. This article aims also at presenting a new robust
correction method that extends Herbland’s work. It follows the
same idea but it is derived from the transformation field analysis
(TFA) (Dvorak and Benveniste, 1992) approach developed in the
homogenization literature.

This contribution is organized as follows. Section 2 of this paper
briefly sums up Herbland’s linear and non-linear correction meth-
ods. The tested geometries and material models are presented in
Section 3. Section 4 is dedicated to the application of both linear
and non-linear Herbland’s methods. The new correction method
we propose is presented together with its application in Section 5.
Finally, both Herbland’s and the new correction method have been
validated on a multiperforated specimen as described in Section 6.

2. Linear and non-linear notch correction methods

In Herbland’s method (Herbland et al., submitted for
publication), the plastic zone at notch tip is seen as an inclusion
in a semi-infinite matrix. In the case of an infinite elastic matrix,
Eshelby’s solution links the stress in the inclusion r

�
I and in the

matrix r
�

M:
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where the superscript M denotes matrix quantities and the super-
script I denotes inclusion quantities. The fourth order tensor C

�
depends on the elastic properties of the material and the geometry
of the inclusion. This type of stress redistribution is the basis of
Kröner’s model for polycrystals. It is valid at the onset of plastic
flow. If the problem is restricted to confined plasticity at the notch
tip, the plastic deformation in the matrix e

�
pM is supposed to be

equal to zero so that Eq. (3) reduces to:
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In the notch correction framework and following Neuber’s type of
approaches, the superscript M stands for the quantities at the notch
tip coming from the elastic computation and the superscript I
denotes the quantities in the elastic–plastic case. Nevertheless, other
definitions for r

�
M are discussed in Herbland et al. (submitted for

publication) (nominal stress, average over a volume around the
notch tip). This method will be denoted CL in the following. In fact,

the analogy with the homogenization models is not fully verified,
since, due to the introduction of the free surface, the stress state is
not uniform in the plastic zone, and some stress components are null.

As classically shown in the homogenization framework
(Berveiller and Zaoui, 1978), this linear correction leads to elastic
accomodation. Herbland proposed an extension of his method to
take into account plastic accomodation, still using tools from the
homogenization literature. He applied the b-rule (Cailletaud,
1987) which consists in replacing the plastic strain e

�
pI by an auxil-

iary variable b
�

I whose evolution is governed by a non-linear equa-

tion. More precisely, Herbland proposed the following evolution
equation for b

�
I to control ratcheting effect:
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The tensor d
�

is introduced to limit the ratcheting effect due to the
non-linear term. It is diagonal and writes, using Voigt notations:

d
�
¼

d 0 0 0 0 0
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Herbland’s non-linear correction method will be denoted CNL in the
following.

The linear and non-linear methods are summed up by Fig. 1. In
a first step, the tensor C

�
(plus D

�
; d for the non-linear method) are

calibrated through FE simulations. As it will be explained later,
assumptions on the shape of those tensors can be made to reduce
the number of parameters to be identified. First, an elastic-visco-
plastic FE simulation on a monotonic or few cycles (typically 5
cycles) will be used as a reference. Then, an elastic simulation is
performed to get r

�
M at notch tip. This elastic simulation is post-

processed to estimate the stress and strain fields at notch tip using
Eq. (4) and the constitutive equations of the material. Reference
values and notch correction values for r

�
and e

�
are then compared

in an optimization loop to obtain the optimal values for the
method parameters C

�
; D
�
; d. In a second step, the notch correction

method can be used on the same geometry and for the same

Fig. 1. Schematic view of the linear and non linear correction methods.
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