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a b s t r a c t

The deformation and vibration of vertical flexible loops are investigated theoretically and experimentally.
Both upright and hanging loops are considered. Potential applications include nanorings and carbon
nanotubes as force sensors or structural components. The upright tubes rest on a rigid or linearly elastic
(Winkler) foundation, and cases with adhesion and nonlocal elasticity are included in the analysis. The
hanging loops are suspended by a clamp with zero or finite length. The effects of self-weight, foundation
stiffness, work of adhesion, and nonlocal elasticity on the loop height or depth are determined, as well as
the effects of self-weight and foundation stiffness on the lowest frequency for in-plane symmetric vibra-
tion. Good agreement is attained between theoretical results (based on an inextensible-elastica model)
and experimental data.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper treats a narrow strip formed into a vertical circular
loop that is either upright (resting on a foundation) or hangs
downward (suspended by a zero-length or finite-length clamp),
subjected to its self-weight. Such a strip is sometimes called a rib-
bon. The problem can be related to cylindrical shells, nanorings,
and carbon nanotubes. Equilibrium states are investigated, and in
some cases small in-plane symmetric vibration about those
configurations is considered. An analysis based on an inextensible
elastica is carried out, and experiments are conducted. In the ‘‘basic
problem’’, the loop is upright and the foundation is rigid.
Extensions that are examined for upright loops include a linearly
elastic (Winkler) foundation, adhesion between the loop and the
foundation, and nonlocal elasticity of the loop.

The basic problem was analyzed by Wang and Watson (1981).
Typical equilibrium shapes are depicted in Fig. 1. Similar shapes
were obtained in Raux et al. (2010), theoretically and experimen-
tally, for ribbons made of an elastic polymer. Hertel et al. (1998)
and Pantano et al. (2004) showed such cross-sectional shapes for
horizontal carbon nanotubes on a graphite substrate, with self-
weight neglected and with deformations caused by van der Waals
forces between the nanotube and the substrate. A similar problem

was examined in Liu and Xia (2013), where the ends of a carbon
nanotube were bent and attached to form a nanoring that was
placed vertically on a horizontal substrate. The nanoring was
modeled as an inextensible elastica.

Zheng and Ke (2010, 2011) considered a nanoring comprised of
a bent carbon nanotube or a bundle of them. The ring was placed
vertically on a horizontal substrate, and again self-weight was
neglected and adhesion between the structure and the substrate
was included. A vertical force (downward or upward) was applied
at the top, and the authors referred to possible applications as a
force sensor or a structural component in a nanoscale system. An
inextensible-elastica analysis was performed, along with experi-
ments. In the analysis, repulsive van der Waals forces induced a
small separation between the nanoring and the substrate.

Finally, Shi et al. (2012, 2013) analyzed cross-sectional
deformations of a small cylindrical shell resting on a horizontal
substrate and subjected to a vertical force (downward or upward)
at the top. Self-weight was neglected, and internal pressure was
included (applicable to liposomes and biological cells). The attrac-
tive-repulsive interaction between the nanotube and the substrate
was modeled by a point-to-point force acting perpendicularly to
the cross section or to the substrate, rather than integrating a
distributed force over the adjacent surface (Plaut et al., 2012).

The basic problem is formulated in Section 2, including the
hanging loop, and the experiments are described in Section 3. Equi-
librium results for the basic problem are shown in Section 4, and

http://dx.doi.org/10.1016/j.ijsolstr.2014.05.003
0020-7683/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 540 552 0111; fax: +1 540 231 7532.
E-mail address: rplaut@vt.edu (R.H. Plaut).

International Journal of Solids and Structures 51 (2014) 3067–3075

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.05.003&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.05.003
mailto:rplaut@vt.edu
http://dx.doi.org/10.1016/j.ijsolstr.2014.05.003
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


extended to include a Winkler foundation in Section 5, adhesion in
Section 6, and nonlocal elasticity with adhesion in Section 7. Vibra-
tions are treated in Section 8, and concluding remarks are given in
Section 9. All results are presented in nondimensional form.

2. Formulation of basic problem

Four cases were delineated in Wang and Watson (1981) for
upright loops. In Case I, for sufficiently low self-weight, the loop
contacts the substrate only at the lowest point of the loop. In Case
II, for a higher range of self-weight, a flat segment of the bottom of
the loop is in contact with the substrate (see Fig. 1). In Case III, for a
still higher range of self-weight, the bottom of the loop is in contact
over a flat segment and the point that started at the top of the loop
(for small self-weight) is in contact with the bottom of the loop.
Finally, in Case IV, for high self-weight, a segment of the previous
top part of the loop is flat on top of the bottom flat segment, with
raised sections past the left and right ends of that segment.

First consider the upright loop, with Case II sketched in Fig. 1(a).
It has circumference L, contact length B with the horizontal rigid
foundation, weight W per unit length, modulus of elasticity E,
width B0, thickness H, cross-sectional area A ¼ B0H, and moment
of inertia I ¼ B0H3=12. With the origin at the right lift-off point,
the arc length is S, the horizontal coordinate is XðS; TÞ, the vertical
coordinate is YðS; TÞ, and the angle between the horizontal and the
tangent to the loop is hðS; TÞ, where T denotes time. The internal
forces are PðS; TÞ and QðS; TÞ parallel to the X and Y axes, respec-
tively, and the bending moment is MðS; TÞ. On a positive face, P is
positive if in the �X direction, Q is positive if in the �Y direction,
and M is positive if counter-clockwise.

The loop is modeled as an inextensible elastica that is unstrained
when straight. The governing equations for 0 < S < L� B for Cases

I–III, based on geometry, moment–curvature relation, and equilib-
rium of an element including inertia forces, are

@X
@S
¼ cos h;

@Y
@S
¼ sin h;

EI
@h
@S
¼ M;

@M
@S
¼ Q cos h� P sin h;

@P
@S
¼ �ðW=gÞ @

2X

@T2 ;
@Q
@S
¼ �W � ðW=gÞ @

2Y

@T2

ð1Þ

(Santillan et al., 2006).
The analysis is conducted in terms of the following nondimen-

sional quantities:

w ¼WL3=EI; x ¼ X=L; y ¼ Y=L; s ¼ S=L; b ¼ B=L; c ¼ C=L;

hf ¼ Hf =L; p ¼ PL2=EI; q ¼ QL2=EI; m ¼ ML=EI;

t ¼ ðT=L2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIg=W

p
; X ¼ xL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W=EIg

p
;

k ¼ KL4=EI; b ¼ ðeoa=LÞ2; wadh ¼WadhL2B0=EI:

ð2Þ

The nondimensional variables are written in the form

xðs; tÞ ¼ xeðsÞ þ xdðsÞ sin Xt; yðs; tÞ ¼ yeðsÞ þ ydðsÞ sin Xt;

hðs; tÞ ¼ heðsÞ þ hdðsÞ sin Xt; mðs; tÞ ¼ meðsÞ þmdðsÞ sin Xt;

pðs; tÞ ¼ pe þ pdðsÞ sin Xt; qðs; tÞ ¼ qeðsÞ þ qdðsÞ sin Xt;

ð3Þ

where subscripts e and d denote ‘‘equilibrium’’ and ‘‘dynamic,’’
respectively. The governing equations for equilibrium are

x0e ¼ cos he; y0e ¼ sin he; h0e ¼ me;

m0e ¼ qe cos he � pe sin he; p0e ¼ 0; q0e ¼ �w:
ð4Þ

For Cases I–III, 0 < s < 1� b.
Small vibrations about equilibrium are examined, and the

resulting equations are

x0d ¼ �hd sin he; y0d ¼ hd cos he; h0d ¼ md;

m0d ¼ ðqd � pehdÞ cos he � ðpd þ qehdÞ sin he;

p0d ¼ X2xd; q0d ¼ X2yd:

ð5Þ

In addition to the upright loop in Fig. 1(a), the hanging loop
shown in Fig. 1(b) is considered. The top of the loop is clamped
to a horizontal surface, and the clamping length is denoted C. In
Eqs. (4) and (5), w is negative for the hanging loop, and
0 < s < 1� c.

3. Experiments

A thin strip of polycarbonate was used to acquire experimental
data. The cross-sectional dimensions were: width B0 ¼ 25:4 mm,
thickness H ¼ 0:127 mm. An independent linear beam bending test
suggested a Young’s modulus E ¼ 2:25 GPa (the polycarbonate
manufacturer’s specifications gave a range of 2.0–2.4 GPa). The
density of the material was measured at 1:18� 10�3 g/mm3 (again
close to the manufacturer’s specifications), thus giving a specific
weight of 11.6 kN/m3, and a specific weight per unit length of
W ¼ 0:0374 N/m for the strip under consideration. The length of
the strip was used as the control parameter over an approximate
range of L � 150 mm (a tight loop) to L � 700 mm (where the loop
collapsed onto itself causing self-contact, in the ‘up’ orientation).
The length over which the loop was clamped at the boundary con-
dition was held fixed at C ¼ 17 mm. Given the nondimensional
expression w ¼WL3=EI, the slenderness of the strips corresponds
to the accessible ranges �w ¼ 14! 1400.
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Fig. 1. Geometry of loop subjected to self-weight: (a) upright on rigid foundation;
(b) hanging.
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