

Available online at www.sciencedirect.com



Experimental and Molecular Pathology

Experimental and Molecular Pathology 83 (2007) 327-331

www.elsevier.com/locate/yexmp

## Megakaryocytes and platelet homeostasis in diffuse alveolar damage

Rajni V. Mandal<sup>a</sup>, Eugene J. Mark<sup>a</sup>, Richard L. Kradin<sup>a,b,\*</sup>

<sup>a</sup> Department of Pathology, Massachusetts General Hospital, Boston, MA, USA <sup>b</sup> Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA

> Received 2 August 2007 Available online 31 August 2007

#### Abstract

Platelet homeostasis reflects a balance between the production of platelets via cytoplasmic fragmentation of megakaryocytes in the pulmonary microvasculature and their catabolism. Increased numbers of megakaryocytes are entrapped in the injured lung, potentially affecting circulating platelet counts. We enumerated pulmonary megakaryocytes and blood platelets in patients with diffuse alveolar damage (DAD) in order to determine their association with clinical outcome. Lung biopsies were examined from 21 patients with histologically documented DAD in its proliferative phase and secondary to a variety of causes. Blood platelet counts were determined within 24 h prior to lung biopsy, and CD61+ pulmonary megakaryocytes were localized in *in situ* immunohistochemical stains. The overall mortality in this series was 67%. Patients with DAD attributable to drug toxicity (DAD-D) had higher mortality (80%) and greater number of intrapulmonary CD61+ megakaryocytes than those with DAD due to other causes ( $23\pm7$ ,  $10\pm2$ , p<0.05). Patients with blood platelet counts =350 th/cm<sup>3</sup> showed increased survival (p<0.05). The findings support the hypothesis that abnormal platelet homeostasis is associated with increased mortality in acute lung injury and indicate that thrombocytosis in ARDS is associated with improved survival. The mechanisms of altered platelet homeostasis in DAD merit further investigation. © 2007 Elsevier Inc. All rights reserved.

Keywords: Adult respiratory distress syndrome; Diffuse alveolar damage; Megakaryocytes; Platelets

#### Introduction

The acute respiratory distress syndrome (ARDS) is a clinical disorder characterized by radiographic evidence of pulmonary edema and respiratory failure (Piantadosi and Schwartz, 2004). The mortality of ARDS in the United States approaches 60%, with protective ventilation therapy remaining as the mainstay of treatment (Piantadosi and Schwartz, 2004; Ware, 2005). The pathophysiology of ARDS is complex and includes activation of the pulmonary endothelium, capillary injury, and plasma protein leakage (Piantadosi and Schwartz, 2004). Common associated causes of ARDS include sepsis, aspiration, trauma, pancreatitis, smoke inhalation, and drug toxicity. A variety of clinical parameters have been associated with outcome of ARDS, including age, comorbid illness, and multiorgan system failure (Ware, 2005).

E-mail address: rkradin@partners.org (R.L. Kradin).

The histopathologic correlate of ARDS, in most cases, is diffuse alveolar damage (DAD). Lung biopsies establish the diagnosis of DAD and exclude other potentially treatable etiologies of ARDS, including infection (Kao et al., 2006). The sine qua non of DAD is the hyaline membrane, composed of fibrin and necrotic epithelial cell debris lining alveolar septae. The later fibroproliferative phase is characterized by the proliferation of lung cell precursors and by fibroplasia. Intravascular fibrin thrombi are seen in both small and large pulmonary vessels in ~50% of cases.

Abnormalities of platelet homeostasis have been observed in ARDS (Carvalho et al., 1987). These include increased platelet turnover rate and increased sequestration of platelets in the lung, liver, and spleen (Schneider et al., 1980). Disseminated intravascular coagulation (DIC) may develop in ARDS and has been shown to be more prevalent in those dying with the disorder (Bone et al., 1976). However, in patients with ARDS, thrombocytopenia has been associated with decreased survival even in the absence of DIC (Bone et al., 1976, 1992).

Platelets are generated normally via the cytoplasmic fragmentation of megakaryocytes within the pulmonary capillary bed

<sup>\*</sup> Corresponding author. Departments of Pathology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.

| Table 1              |   |
|----------------------|---|
| Patient demographics | 5 |

| Age | Sex | Outcome | Blood platelet count (th/cm <sup>3</sup> ) | Hospital stay days | Etiology                                                      |
|-----|-----|---------|--------------------------------------------|--------------------|---------------------------------------------------------------|
| 74  | М   | Dead    | 333                                        | 29                 | Cytoxan therapy for pulmonary fibrosis                        |
| 55  | F   | Dead    | 126                                        | 26                 | Cisplatin chemotherapy and radiation for small cell carcinoma |
| 66  | М   | Dead    | 74                                         | 20                 | Busulfan therapy for lymphoma                                 |
| 67  | М   | Dead    | 270                                        | 25                 | Bleomycin therapy for laryngeal carcinoma                     |
| 63  | М   | Dead    | 234                                        | 22                 | Cytomegalovirus and Candida sepsis                            |
| 68  | М   | Dead    | 105                                        | 67                 | Cytomegalovirus pneumonitis and Wegener's granulomatosis      |
| 82  | F   | Dead    | 327                                        | 14                 | Post myocardial infarction and hypoxemia                      |
| 49  | F   | Dead    | 55                                         | 1                  | Ischemic pulmonary infarction following lung transplantation  |
| 66  | F   | Dead    | 39                                         | 12                 | Fungal sepsis                                                 |
| 23  | F   | Dead    | 150                                        | 36                 | Bacterial pneumonia following lung transplantation            |
| 58  | F   | Dead    | 73                                         | 10                 | Pneumonia                                                     |
| 58  | F   | Dead    | 271                                        | 7                  | Mycobacterial pneumonia                                       |
| 44  | М   | Dead    | 61                                         | 21                 | Acute myelogenous leukemia                                    |
| 74  | М   | Dead    | 297                                        | 15                 | Steroid therapy for rheumatoid disease                        |
| 76  | М   | Alive   | 387                                        | 25                 | Amiodarone pneumonitis                                        |
| 46  | М   | Alive   | 434                                        | 62                 | Post-operative hypoxemia                                      |
| 49  | F   | Alive   | 382                                        | 14                 | Diabetic ketoacidosis                                         |
| 57  | F   | Alive   | 432                                        | 16                 | Eosinophilic pneumonitis                                      |
| 77  | М   | Alive   | 56                                         | 48                 | Neutropenia and Wegener's granulomatosis                      |
| 49  | F   | Alive   | 171                                        | 47                 | Steroid therapy for rheumatoid disease                        |
| 31  | М   | Alive   | 206                                        | 72                 | Prolonged intubation following cerebrovascular accident       |

as judged by ultrastructural observations both in mice and humans (Zucker-Franklin and Philipp, 2000). Whereas megakaryocytes are rarely identified histologically in the pulmonary microvasculature of normal lungs, pulmonary microvascular megakaryocytes are frequently identified by surgical pathologists in biopsies of DAD. Increased pulmonary megakaryocytes have been described in patients dying from burns (Well et al., 1984) and in experimental models of shock (Sukowski et al., 1999) and may be a generic marker of both localized and diffuse acute pulmonary microvascular injuries. As pulmonary megakaryocytes are commonly seen in DAD, we examined the quantitative relationship between pulmonary megakaryocytes and blood platelet counts in patient with ARDS and determined whether changes in these parameters might predict subsequent mortality.

### Materials and methods

Video-assisted thoracoscopic lung biopsies conducted between 1995 and 2006 with a histologic diagnosis of DAD in fibroproliferative phase were retrieved from the files of Massachusetts General Hospital Pathology Department. Blood platelet counts (normal range=150–250 th/cm<sup>3</sup>) recorded within 24 h prior to lung biopsy were retrieved from medical records. Sections (5  $\mu$ M) from paraffin-embedded and formalin-fixed tissues were stained by indirect immunohistochemical methods with anti-CD61, which binds to the IIIa subunit of the glycoprotein heterodimer IIb/IIIa located on the cell surface membranes of both megakaryocytes and platelets (Ventana Medical Systems,



Fig. 1. (A) Diffuse alveolar damage (DAD) showing numerous hyaline membranes and proliferative changes, hematoxylin and eosin, magnification 100×. (B) Intravascular pulmonary megakaryocyte, as seen in H&E stained sections of DAD, magnification 400×. (C) CD61+ megakaryocyte as seen in the lung in DAD, peroxidase stain, magnification 400×.

Download English Version:

# https://daneshyari.com/en/article/2775808

Download Persian Version:

https://daneshyari.com/article/2775808

Daneshyari.com