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a b s t r a c t

Bridging techniques between microscopic and macroscopic models are discussed in the case of wrinkling
analysis. The considered macroscopic models are related to envelope equations of Ginzburg–Landau type,
but generally, they are not valid up to the boundary. To this end, a multi-scale approach is considered: the
reduced model is implemented in the bulk while the full model is applied near the boundary and these
two models are coupled with the Arlequin method (Ben Dhia, 1998). This paper focuses on the definition
of the coupling model and the transition between two scales. Especially, a new nonlocal bridging tech-
nique is presented and compared with another recent one (Hu et al., 2011). The present method can also
be seen as a guide for coupling techniques involving other reduced order models.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Wrinkling phenomenon is one of the major concerns for the
analysis, design and optimization of structures (Rossi et al., 2005)
and material processing (Abdelkhalek et al., 2010), self-organized
surface morphology in biomechanics (Efimenko et al., 2005), pat-
tern formation for micro/nano-fabrication (Bowden et al., 1998),
etc. To analyze such phenomena, we propose the use of macro-
scopic models based on envelope equations as in the field of
cellular instability problems (Wesfreid and Zaleski, 1984; Cross
and Hohenberg, 1993; Hoyle, 2006). Such macroscopic descrip-
tions are common for Rayleigh–Bénard convection (Newell and
Whitehead, 1969; Segel, 1969), buckling of long structures
(Damil and Potier-Ferry, 1986; Boucif et al., 1991; Abdelmoula
et al., 1992), surface wrinkling of stiff thin films resting on compli-
ant substrates (Bowden et al., 1998; Chen and Hutchinson, 2004;
Huang et al., 2004; Huang et al., 2005; Audoly and Boudaoud,
2008; Wang et al., 2008; Brau et al., 2011; Cao and Hutchinson,
2012; Zang et al., 2012), fiber microbuckling and compressive fail-
ure of composites (Drapier et al., 2001; Kyriakides et al., 1995;
Waas and Schultheisz, 1996), wrinkling of membranes (Rossi
et al., 2005; Wong and Pellegrino, 2006; Rodriguez et al., 2011;
Lecieux and Bouzidi, 2010; Lecieux and Bouzidi, 2012) and many

other instabilities arising in various scientific fields (Wesfreid
and Zaleski, 1984; Cross and Hohenberg, 1993). The responses of
such systems are often nearly periodic spatial oscillations. There-
fore, the evolution can be described by envelope models similar
to the famous Ginzburg–Landau equation (Segel, 1969; Damil
and Potier-Ferry, 1992; Hunt et al., 2000; Iooss et al., 1989).

A new approach has been recently adopted by Damil and Potier-
Ferry, 2006; Damil and Potier-Ferry, 2008; Damil and Potier-Ferry,
2010 to model wrinkling phenomena. The approach is based on the
Ginzburg–Landau theory (Wesfreid and Zaleski, 1984; Iooss et al.,
1989). In the proposed theory, the envelope equation is derived
from an asymptotic double scale analysis and the nearly periodic
fields (reduced model) are represented by Fourier series with
slowly varying coefficients. This mathematical representation
yields macroscopic models in the form of generalized continua.
In this case, the macroscopic field is defined by Fourier coefficients
of the microscopic field. It has been shown recently that this
approach is able to account for the coupling between local and glo-
bal buckling in a computationally efficient manner (Liu et al., 2012)
and it remains valid beyond the bifurcation point (Damil and
Potier-Ferry, 2010).

Nevertheless, a clear and secure account of boundary conditions
cannot be obtained, which is a drawback intrinsically linked to the
use of any model reduction. To solve this problem, a multi-scale
modeling approach has been recently proposed in order to bypass
the question of boundary conditions (Hu et al., 2011): the full
model is implemented near the boundary while the envelope
model is considered elsewhere, and these two models are bridged
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by the Arlequin method (Ben Dhia, 1998, 2006, 2008; Ben Dhia and
Rateau, 2005). This idea makes it possible to clarify the question of
boundary conditions, which keeps the advantages of the two
approaches: the envelope model in the bulk makes it possible to
simplify the response curves and limit the total number of degrees
of freedom; the fine model avoids the cumbersome problem of the
boundary conditions being applied to the envelope equation. In
this paper, we revisit these coupling techniques between a refer-
ence model and a reduced model of Ginzburg–Landau type.

Over the last decade, various numerical techniques have been
developed to couple heterogeneous models, e.g. the Arlequin
method (Ben Dhia, 1998, 2006, 2008; Ben Dhia and Rateau, 2005)
or the bridging domain method (Xiao and Belytschko, 2004). One
can couple classical continuum and shell models (Ben Dhia and
Rateau, 2005), particle and continuum models (Bauman et al.,
2008; Prudhomme et al., 2008; Prudhomme et al., 2012; Bauman
et al., 2009; Xiao and Belytschko, 2004), heterogeneous meshes
(Ben Dhia and Rateau, 2005; Hu et al., 2009) or more generally het-
erogeneous discretizations (Ben Dhia and Jamond, 2010; Biscani
et al., 2012). For instance, local stresses around the boundary have
been computed by coupling 2D elasticity near the boundary and 1D
beam model elsewhere (Hu et al., 2009, 2010).

Basically, the Arlequin method aims at connecting two spatial
approximations of an unknown field, generally a fine approxima-
tion Uf and a coarse approximation Ur . The idea is to require that
these two approximations are neighbor in a weak and discrete
sense and to introduce Lagrange multipliers in the corresponding
differential problems. At the continuous level, a bilinear form must
be chosen, which can be L2-type, H1-type or energy type (Ben Dhia
and Rateau, 2005; Ben Dhia, 2008; Bauman et al., 2008). The first
and important application of the Arlequin method is the coupling
between two different meshes discretizing the same continuous
problem: in this case, the mediator problem should be discretized
by a coarse mesh to avoid locking phenomena (Ben Dhia and
Rateau, 2005) and spurious stress peaks (Hu et al., 2009). But the
two connected problems are not always in the same space, as for
instance when dealing with particle and continuous problems. In
this case, a prolongation operator has to be introduced to convert
the discrete displacement into a continuous one and next a con-
nection between continuous fields is performed (Bauman et al.,
2008): this is consistent because the continuous model can be seen
as the coarsest one. A similar approach has been applied in the cou-
pling between plate and 3D models. A prolongation operator has
been introduced (i.e. from the coarse to the fine level) and the inte-
gration is done in the 3D domain but the discretization of the
Lagrange multiplier corresponds to a projection on the coarsest
problem: thus, in this sense, this coupling of plate/3D is also
achieved at the coarse level. In the same spirit, for the coupling
between a fine model and an envelope model that is discussed in
this paper, the connection should also be done at the coarse level,
i.e. between Fourier coefficients. On the contrary, a prolongation
operator from the coarse to the fine model had been introduced
in the previous paper (Hu et al., 2011) and the connection had been
done at this level. Therefore, one can wonder if the imperfect con-
nection observed in Hu et al. (2011) could be improved by intro-
ducing a coupling at the relevant level. This paper tries to answer
this question by studying again the Swift–Hohenberg equation
(Swift and Hohenberg, 1977) that is a simple and illustrative exam-
ple of quasi-periodic bifurcation. Very probably, the same ideas can
be applied to 2D macroscopic membrane models that were
recently introduced in Damil et al. (2013). Note that the presented
new technique can be considered as nonlocal since it connects Fou-
rier coefficients involving integrals on a period. A similar nonlocal
coupling has been introduced in Prudhomme et al. (2012) in the
case of an atomic-to-continuum coupling, where the atomic model
is reduced by averaging over a representative volume.

The question addressed in this paper is more or less generic in
applying bridging techniques to reduced models or multi-scale
models. The first papers about the Arlequin method focused on
the choice of a bilinear form and its discretization. But in asymp-
totic multiple scale methods (Sanchez-Palencia, 1980) or in compu-
tational homogenization (Feyel, 2003), one clearly distinguishes
two independent spatial domains: a macroscopic domain to
account for slow variations and a microscopic domain for the rapid
variations. Therefore, the connection operators between the two
levels have to be clearly defined, as well as the level at which the
coupling is achieved. This subject will be discussed in this paper.

The paper is organized as follows. In Section 2, we establish the
theoretical framework of the multi-scale approach, using Fourier
coefficients as in Damil and Potier-Ferry (2006). Then we derive
the macroscopic envelope model together with a critical review
of the adopted approach. In Section 3, the reduction methodology
to obtain different envelopes has been discussed with the example
of an elastic beam subjected to a nonlinear elastic foundation.
Section 4 is dedicated to the bridging technique and the discretiza-
tion. The difference in terms of methodology between the prolon-
gation coupling (Hu et al., 2011) and the reduction-based coupling
approach is thoroughly explored. In Section 5, the wrinkling
prediction of an elastic beam on a nonlinear elastic foundation is
analyzed using the developed nonlocal reduction-based coupling
approach. The results are compared to those obtained using
the prolongation coupling approach. Conclusions are reported in
Section 6.

2. Macroscopic modeling of instability pattern formation

The numerical test considered in this paper is the famous
Swift–Hohenberg equation (Swift and Hohenberg, 1977) that cor-
responds to the problem of a compressed elastic beam coupled
with a nonlinear foundation. It has been studied in many papers,
for instance in Hunt et al. (1989), Hunt et al. (2000), Damil and
Potier-Ferry (2010), Mhada et al. (2012), because it is a very repre-
sentative example in the study of cellular instabilities. From this
microscopic model, a macroscopic envelope model will be pre-
sented and studied in the rest of the paper. Among those discussed
in Damil and Potier-Ferry (2010), it is not the more accurate, but it
is the simplest one and it is able to describe the amplitude modu-
lation of the oscillation. Let us recall that the central point of the
paper is a bridging technique used to correct a reduced model near
the boundary. This technique has to be robust and it has to play its
part for several levels of reduced model.

2.1. Description of the microscopic model

We consider the example of an elastic beam subjected to a
nonlinear elastic foundation as shown in Fig. 1. The unknowns
are the components uðxÞ and vðxÞ of the displacement vector and
the normal force nðxÞ, which represents UðxÞ ¼ fuðxÞ;vðxÞ;nðxÞg.
We will study the following set of differential equations:

dn
dx þ f ¼ 0; ðaÞ
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Fig. 1. Sketch of an elastic beam on a nonlinear elastic foundation.
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