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a b s t r a c t

Complex materials, often encountered in recent engineering and material sciences applications, show no
complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation
time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in
a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can
extracted from the material. The non-uniqueness of the free energy function is removed in the paper
for power-laws relaxation/creep function by using a recently proposed mechanical analogue to
fractional-order hereditariness.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent applications in engineering and physical sciences have
involved reticulated polymers, foams, hydrogels soft matter as well
as biological tissues as shown in several papers (Nutting, 1921;
Gemant, 1936; Jaishankar and McKinley, 2013; Nawaz et al.,
2012). These materials show significative deviations of their
mechanical and rheological features from well-studied conven-
tional materials.

The differences are mainly due to the presence of a marked
microstructure with material cross-links, Wan der Waals
interactions and/or dipole–dipole bonds that lead to unpredictable
behavior with the well-known tools of continuum mechanics,
material rheology and thermodynamics. Indeed, in the rheology
framework studied in the paper, complex materials involve differ-
ent states of the matter that cannot be separated at the macro-
scopic observation scale. Such a consideration suggests that a
rheological description in terms of mechanical arrangements of
linear springs and linear dashpots, representing the solid and the
fluid phases, respectively, is not acceptable. This is confirmed by
experimental relaxation spectra (see e.g. paper Baumgaertel and
Winter, 1992) that shows a continuous distribution of relaxation

times. Continuous relaxation times spectra are not described by
single or multiple exponential-type relaxation functions, corre-
sponding to arrangements of springs and dashpots, and they may
be described, instead, by power-law relaxation functions.

As a matter of fact creep and relaxation tests show that
experimental data may be fit with extraordinary precisions by
power-laws with real-order exponents 0 6 b 6 1 (Lakes, 2009;
Magin and Royston, 2010) yielding, by the Boltzmann superposi-
tion integral, constitutive equations in terms of fractional opera-
tors (Scott-Blair, 1947; Caputo, 1974; Mainardi, 2010; Samko
et al., 1993). Fractional differential calculus may be thought as a
generalization of the well-known, integer-order, calculus operators
that turns the order j 2 N of differentiation of a function f ðxÞ into a
real-order value j 6 b 6 jþ 1 so that djf ðxÞ ! dbf ðxÞ. Incorporating
such fractional-order operators into the governing constitutive
equations produces new viscoelastic models for fractional heredi-
tary materials (FHM) that exhibit power-law relaxations. Mechan-
ical and geometrical representations of the fractional
differentiation have been reported in several scientific fields, such
as, mechanics (Di Paola and Zingales, 2008; Cottone et al., 2009),
thermodynamics (Povstenko, 2005; Povstenko, 2009; Sapora
et al., 2013; Borino et al., 2011; Mongiovi and Zingales, 2013)
beside rheology (Bagley and Torvik, 1983; Schiessel and Blumen,
1993).

The main gap in the use of alternative relaxation functions with
respect to the widely used linear combination of exponential
relaxations is related to the lack of a unique definition of the free
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energy function. This is the consequence to the incomplete separa-
tion of the materials’ elastic and viscous phases at the scale of the
tensile tests, yielding non-conventional creep and relaxation func-
tions. Indeed if the two phases of the material may be clearly iden-
tified, as in conventional applications, then an exponential-type
relaxation function is observed in creep/relaxation tests and no dif-
ferences among the existent versions of the free energies exist.

In this regard, free energies, defined upon phenomenological
relaxation/creep functions must satisfy the fundamental properties
described in classical papers by Volterra (1940), Graffi and Fabrizio
(1989) and DelPiero and Deseri (1996) and, as those properties are
satisfied, several well-known different expressions for free energies
may be found in scientific literature (Staverman and Schwarzl,
1952; Breuer and Onat, 1964; Gurtin and Hrusa, 1988; Morro and
Vianello, 1989; Deseri et al., 2006). Despite their equivalence in
terms of the correspondent stress, very different configurations,
each corresponding to the same material state, may have the same
value of the free energy. Indeed the mechanical tests usually intro-
duced to define the relaxation/creep function of the material do not
allow for the evaluation of the material stored energy nor of the dis-
sipated energy. This is a severe drawback since the maximum
recoverable work from the material cannot be evaluated using
relaxation functions other than the exponential-type. The use of
power-law relaxation functions / t�b with 0 6 b 6 1 undergoes
the same limitation, restricting the use of power-laws for the repre-
sentation of creep and relaxations of unconventional materials.

In a general context, the aforementioned considerations may be
overcome, allowing for only one definition of the material free
energy, as the elastic (solid) and viscous (fluid) phases of the mate-
rial may be separated. In this regard it has been recently shown that
power-law creep/relaxations may be obtained with a mechanical
analogue to the fractional-order springpot with a complete separa-
tion of solid and fluid phases (Di Paola et al., 2013a,b; Di Paola and
Zingales, 2012). This model served, also, as a guide to introduce a
fractal material microstructure yielding a macroscopic power-law
relaxation with the order of the power-law corresponding to the
Hausdorff dimension of the microstructure (Deseri et al., 2013).

In this paper the model is further investigated to provide a
unique expression of the free energy functional of FHM. It is shown
that the evaluation of the dissipation rate of FHM, obtained with
the mechanical analogue to the power-law relaxation, coincides
after some algebraic manipulations, with the well-known dissipa-
tion rate of the Stavermann–Schwarzl formulation.

Additionally, the complete characterization of parameters of
FHM, requires specific care in the definition of the equivalence
classes of the stress (or strain) histories undergone by the material,
namely to the knowledge of the state of the material (Noll, 1972).
Indeed, it has been shown recently that the correct evaluation of
FHM parameters requires the knowledge of the entire strain histo-
ries undergone by the material specimen (Di Paola et al., 2013), and
then, the correct definition of the material state is crucial for the
general derivation of the free energy functional (Graffi and
Fabrizio, 1989; DelPiero and Deseri, 1997). This latter problem is
not so evident for relaxation functions given as linear combination
of exponential laws since a discrete number of state variables are
involved for the definition of the material state. The expression
of the free energy in terms of the material state for the power-laws
relaxation functions has also been provided in the paper.

The paper is organized as follows: In the next section the
authors will provide some basic definitions involving power-laws
creep/relaxations, the corresponding definitions of fractional inte-
grals and derivatives and the definition of material free energy. In
Section 3 the rheological description of power-laws creep/relax-
ations will be briefly outlined for EV and VE material models. Sec-
tion 4 will be devoted to the evaluation of the elastic energy stored
in the mechanical model showing that it coalesces with a specific

form of the free energy based upon the phenomenological
power-law relaxation function. The expression for the material free
energy in terms of the state of FHM is reported in Section 5 with
some comments reported in Section 6. Mathematical details about
fractional-order calculus have been introduced in Appendix A and
some additional informations concerning the mathematical deriva-
tions reported in the paper have been discussed in Appendix B.

2. Power-law relaxation (creep) function: the free energy
function of FHM

In the subsequent derivations we recall that two hypotheses are
considered while analyzing viscoelastic materials (see e.g.
Mainardi, 2010): (i) invariance under time translation and (ii) cau-
sality. With the first requirement we mean that a time shift in the
input is reflected as the same shift in the output; with the second
we mean that the material response depends on previous histories
only, reflecting the memory of such materials. The discussion
about the power-law relaxation (creep) function in integral mate-
rial hereditariness is reported in this section with regards to the
issues:

1. Power-law relaxation (creep) functions yielding the constitutive
relations among the stress measure and the strain measure in
terms of fractional-order operators.

2. The free energy function of FHM that represent a scalar measure
of the stored material energy.

The section is devoted to the introduction of power-law relaxation/
creep functions and their relations with fractional-order derivatives
and integrals (Section 2.1). The definition of the material free
energy and its relation with the stress measure are discussed in
Section 2.2

2.1. Power-law relaxation (creep) function: fractional-order calculus

Let us assume, in this section, to deal with virgin materials,
namely either the strain or the stress are known from the very
beginning of the observation of their behavior, conventionally set
at t ¼ 0, and hence no past histories with respect to such a time
need to be taken into account.

Creep and relaxation tests are performed to detect the memory
of the material: in the first case, the stress is held constant and the
strain is measured, whereas in the second one the strain is held
constant and the stress is measured. Whenever either a unit stress
or a unit strain is utilized, the creep compliance JðtÞ and relaxation
modulus GðtÞ are found as the strain and stress response to the
imposed unit stress and strain respectively, i.e.

�ðtÞ ¼ UðtÞ�!rðtÞ ¼ GðtÞ; ð1aÞ
rðtÞ ¼ UðtÞ�!�ðtÞ ¼ JðtÞ; ð1bÞ

where Uð�Þ is the unit Heaviside step function. When either the
creep or the relaxation function is known, the Boltzmann superpo-
sition principle allows writing convolution-type Riemann–Stieltjies
integrals to express the relationships between r and �. Whenever
either the strain or the stress are prescribed, the constitutive rela-
tions for the corresponding derived quantities read as follows:

rðtÞ ¼
Z t

0þ
Gðt � sÞd�ðsÞ; ð2aÞ

�ðtÞ ¼
Z t

0þ
Jðt � sÞdrðsÞ: ð2bÞ
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