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a b s t r a c t

This paper develops a new peridynamic state based model to represent the bending of an Euler–Bernoulli
beam. This model is non-ordinary and derived from the concept of a rotational spring between bonds.
While multiple peridynamic material models capture the behavior of solid materials, this is the first
1D state based peridynamic model to resist bending. For sufficiently homogeneous and differentiable
displacements, the model is shown to be equivalent to Eringen’s nonlocal elasticity. As the peridynamic
horizon approaches 0, it reduces to the classical Euler–Bernoulli beam equations. Simple test cases
demonstrate the model’s performance.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A goal of many mechanical engineering analyses is the predic-
tion and description of material failure. When processes such as
fracture are modeled, the partial-differential equations of classical
mechanics are ill-defined at the resulting discontinuities in
displacement. A peridynamic formulation of continuum mechanics
casts material behavior in terms of integral functions of displace-
ment (as opposed to gradients of displacement), so that discontinu-
ities can evolve naturally and require no special treatment. Various
peridynamic material models capture the deformation behavior of
3-dimensional solid objects (Silling et al., 2007; Silling and Askari,
2005; Gerstle et al., 2007), but would be very expensive to imple-
ment for a thin plate or beam, as the thru-thickness discretization
requirement to properly capture resistance to bending would be
prohibitively expensive in a computational setting for a long,
slender structural object. Other peridynamic models capture
tension and compression in 1D bars (Silling et al., 2003) and 2D
membranes (Silling and Bobaru, 2005), but these features do not
resist transverse displacement. A recent paper by Taylor and
Steigmann (2013) reduces a bond based 3D plate to two dimensions
with an integral through the plate’s thickness. This creates a model
that can represent thin structures and includes a bending term, but
is used to simulate tension loading. The model is limited to the 3D
bond-based Poisson ratio m ¼ 1

4, though the same technique could
be applied to a state-based model at the expense of complexity.

This paper presents a peridynamic equivalent to an Euler–
Bernoulli beam, along with a methodology for representing non-
uniform cross-sections, plastic behavior, and failure. Unlike many
continuum beam theories that derive new equations of motion
(such as fourth order PDE’s) from the 3D elastic constitutive model,
the new model is not derived from prior ordinary peridynamic
models based on bond extension, but is a material model that
directly resists bending deformation while maintaining the same
conservation of momentum equation as the 3D model. In addition
to directly modeling a beam in bending, the simple beam case lays
the theoretical framework for more complex peridynamic beam,
plate, and shell bending models. Because many analyses of interest
are partly or wholly comprised of these types of features, their
development is an important addition to the capabilities of peridy-
namic analysis. The remainder of this introduction reviews other
nonlocal work and provides a brief introduction to peridynamics,
including state based models. Section 2 presents the state based
beam model and demonstrates equivalence to classical Euler–
Bernoulli beam theory in the limit of shrinking nonlocality.
Section 3 demonstrates the beam model with simple numerical
examples. Section B demonstrates the model’s relationship to
Eringen’s nonlocal elasticity for small peridynamic horizons.

1.1. Nonlocal beam models

Nonlocal elasticity generally allows for forces at a point that are
dependent on the material configuration of an entire body, rather
than the configuration at that point (Eringen and Edelen, 1972).
While long-range forces are obvious at the molecular model, mate-
rial at larger scales is conventionally modeled as though internal
forces are local or contact forces (Kröner, 1967). The result of such

http://dx.doi.org/10.1016/j.ijsolstr.2014.05.014
0020-7683/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jogrady@gmail.com (J. O’Grady), john.foster@utsa.edu

(J. Foster).
1 Principal corresponding author.

International Journal of Solids and Structures 51 (2014) 3177–3183

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.05.014&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.05.014
mailto:jogrady@gmail.com
mailto:john.foster@utsa.edu
http://dx.doi.org/10.1016/j.ijsolstr.2014.05.014
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


approximation is accurate for deformations that are homogeneous,
but introduces some inaccuracy for inhomogeneous deformations
like the propagation of waves with short wavelengths. One way
to distinguish between homogeneous and inhomogeneous defor-
mations is to incorporate higher-order gradients of deformation.
While stress in classical elasticity is a function of the (first) gradi-
ent of deformation, Eringen’s formulation of a nonlocal modulus in
Eringen (1983) approximates a weighted sum of the first and sec-
ond order gradients. This introduces a length scale to the model
and has the effect of smearing out local deformation inhomogene-
ities over the surrounding material, while maintaining the conven-
tional result for homogeneous deformations.

Previous work in the nonlocal mechanics of beams is motivated
by the observed stiffening of nanoscale cantilevers. Challamel and
Wang demonstrate in Challamel and Wang (2008) that Eringen
nonlocal elasticity cannot reproduce the scale stiffening, but that
stiffening does result from other gradient-elastic models and mod-
els incorporating nonlocal curvature. Because all of these models
incorporate higher-order gradients of deformation, they impose
stronger continuity requirements than classical elasticity, and are
unsuitable for discontinuous displacements. Because the gradients
are evaluated locally, gradient models are called weakly nonlocal.
Recent work by Paola et al. (2014) develops a displacement-based
beam in which relative axial displacement, shear displacement,
and rotation of non-adjacent beam segments are resisted by three
kinds of nonlocal spring, whose stiffnesses can be tuned to the
expected material behavior. With the appropriate nonlocal stiff-
nesses, their model reproduces the nanoscale cantilever stiffening
effect.

1.2. Peridynamics

The term peridynamic alludes to the fact that the force at a point
is affected by nearby material configuration and was coined by
Silling to describe the new formulation of continuum mechanics
he developed in Silling (2000). In contrast to gradient models,
the peridynamic model is strongly nonlocal and casts material
behavior at a point as the integral equation

qðxÞ€uðxÞ ¼
Z

X
fðx;qÞdVq þ bðxÞ

rather than the classical partial-differential equation. Instead of the
divergence of stress, we have the integral of a ‘‘force’’ functional f
of the position vectors x and q of a point within the body domain
X. This force functional may depend on x;q, their deformed
positions, the original and deformed positions of other points in
X, history, etc.

Constitutive modeling of a wide variety of materials is accom-
plished by choosing the appropriate form for the force function.
While the simplest force functions recreate a one-parameter linear
elastic solid material (Silling, 2000), other force functions can be
used to model nonlinear elasticity, plasticity, damage, and other
behaviors (Silling and Bobaru, 2005).

To describe force functionals that incorporate the behavior of a
totality of points in the nearby material (not just x and q), we must
introduce the concept of a peridynamic state.

Introduced by Silling et al. (2007), states are functions of the
behavior of the continuum points surrounding each location. The
most common states are scalar-states and vector-states which
are scalar and vector valued, respectively. Unlike a second order
tensor, which can only map vectors linearly to other vectors, vec-
tor-states can produce nonlinear or even discontinuous mappings.
Important properties of states are magnitude and direction, while
important operations include the addition and decomposition of
states, inner and tensor products, and the Fréchet derivative of a
function with respect to a state (Silling et al., 2007).

Conservation of linear momentum in the state-based peridy-
namic formulation results in the equation of motion,

qðxÞ€uðxÞ ¼
Z

X
ðT½x�hq� xi � T½q�hx� qiÞdVq þ bðxÞ;

in which T½ �h i is a force vector-state that maps the vector in angle
brackets, hi, originating at the point in square brackets, [], to a force
vector acting on that point. The deformed image of the vector
ðq� xÞ is defined as the deformation vector-state, usually denoted
Y and formulated as shown in Eq. (1) for a displacement field u.

Y½x�hq� xi ¼ ðq� xÞ þ ðuðqÞ � uðxÞÞ ð1Þ

Just as stress and strain are work conjugate, so too are the force
and deformation vector states for hyperelastic materials. If the
force state T is always in the same direction as the deformation
state Y, then the force exerted by a ‘‘bond’’ (i.e. the vector q� x
between points is in the same direction as the deformed bond,
and the model is called ordinary. Models in which the bond-force
interactions are not in the same direction as the deformed bond
are called non-ordinary. Silling et al. demonstrate the possibility
of such models in Silling and Lehoucq (2010), but very little work
has touched on their use. Foster et al. (2010) and Warren et al.
(2009) show that some correspondence models, which approxi-
mate the deformation gradient and use it to calculate bond forces,
result in non-ordinary state-based constitutive models for finite
deformations.

2. A non-ordinary beam model

Consider the material model illustrated in Fig. 1 in which every
bond-vector originating from a point is connected by a rotational
spring to its opposite originating from that same point. If we call
the deformed angle between these bonds h, and choose the poten-
tial energy of that spring to be wðnÞ ¼ xðnÞa½1þ cosðhÞ� for the
bond pair n and �n, we can recover the non-ordinary force state
proposed by Silling et al. (2007) by taking the Fréchet derivative.
For the derivation and a description of the Fréchet derivative see
Appendix A.

Thni ¼ rw Yhnið Þ ¼ xðnÞ �a
jYhnij

Yhni
jYhnij �

Yhni
jYhnij �

Yh�ni
jYh�nij

� �
ð2Þ

Though it looks complex, Eq. (2) indicates a bond force perpen-
dicular to the deformed bond and in the plane containing both the
deformed bond and its partner as illustrated in Fig. 2. The force
magnitude is proportional to the sine of the angle between the
bonds divided by the length of the deformed bond. This response
is consistent with the idea of a rotational spring between bonds
as long as the change in angle is small. Because the potential
energy and force states are functions of pairs of peridynamic bonds,
we will call this formulation a bond-pair model. Other choices for
the bond-pair potential function, such as w ¼ ðp� hÞ2, are also pos-
sible, but result in more mathematically complex analysis.

2.1. Energy equivalence

To determine an appropriate choice of a, we desire our peridy-
namic model to have an equivalent strain energy density to a clas-
sical Euler–Bernoulli beam in the local limit, i.e. when the nonlocal
length scale vanishes. We will begin with the assumptions from

Fig. 1. Illustration of a bond pair model that resists angular deformation.
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