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a b s t r a c t

A planar rod model with flexible cross-section has been recently proposed in literature (Guinot et al.,
2012). This model is especially suitable for the modeling of tape springs, which develop localized folds
due to the flattening of the cross-section. Starting from a complete non-linear elastic shell model, original
kinematics assumptions (inspired from the elastica model) have been made to describe the important
in-plane changes of the cross-section shape. In the present work, the choice of the position of the rod
reference line is discussed. This choice plays an important role in the overall behavior because of the large
changes of the cross-section shape. We show that the model published in Guinot et al. (2012) can be
improved by considering the centerline as the rod reference line. This enhanced model is then validated
through quantitative comparisons with experimental results of dynamic deployments taken from
literature.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In its free state, a tape spring can be considered as a straight
thin-walled beam with an open circular cross-section of constant
transverse curvature. One of the most studied test (Seffen and
Pellegrino, 1999) illustrating its behavior is the bending test shown
in Fig. 1. Under applied bending rotations at the ends, this struc-
ture behaves at first like a beam before the sudden appearance of
a localized fold, indicating snap-through buckling. This fold is cre-
ated by a localized flattening of the cross-section which drastically
reduces the moment of inertia and concentrates the bending defor-
mation in the fold area. We shall note that away from the fold, the
tape spring remains almost straight and undeformed. Playing with
a carpenter’s tape measure, one can easily experience the forma-
tion of one or several folds, the motion of a fold along the tape,
the splitting of a single fold into two or the merging of two folds
into one.

Tape springs offer a wide range of compact folded or coiled con-
figurations and thus are an interesting alternative to articulated
rigid structures with hinges and bolts for the design of deployment
systems. However, since their behavior is sensitive to instabilities
and can exhibit a sudden loss of stiffness with largely deformed
shapes, the modeling of such structures is a challenging issue.

As mentioned in Guinot et al. (2012), the natural approach for
the modeling of tape springs consists in the full computation of a
non-linear shell model in the framework of large displacements,
large rotations and dynamics (Hoffait et al., 2009; Seffen et al.,
2000; Walker and Aglietti, 2007). This approach leads to hard-
to-drive and time consuming simulations but provides accurate
static and dynamic solutions for any loading configurations and
boundary conditions. The difficulties reside mainly in the slender-
ness of the structure combined with the transverse curvature that
lead to a highly flexible structure. The slenderness and the trans-
verse curvature also make the structure sensitive to localized buck-
ling that occurs when overall bending leads to compression effects
on the edges of the cross-section.

Considering the particular shape of a tape spring, one can think
about an intermediate model based on a thin-walled beam model.
The literature is extremely extensive on this topic, from the pio-
neering work of Vlassov (1962) to the recent developments on
the Generalized Beam Theory (Dinis et al., 2009;Silvestre, 2007;
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Silvestre et al., 2011;Gonçalves and Camotim, 2009) introduced by
Schardt (1994). Compared to all these models, the main originality
of the rod model proposed in Guinot et al. (2012) lies in the taking
into account of the high flexibility of the cross-section in its plane
through a suitable kinematics inspired from the elastica theory
(Euler, 1744; Goss, 2009), which leads to a reduced number of
kinematic parameters. Starting from a non-linear shell model, the
main idea underlying the model consists in a parametrization of
the cross-section shape (and not of the relative displacements)
under the inextensibility assumption of the ‘cross-section curve’.
This approach has been applied to the folding and dynamic deploy-
ment of tape springs in the previous work (Guinot et al., 2012) with
a rod model involving only four kinematic parameters. It has been
shown that it qualitatively handles the creation of folds, the
motion of a fold along the tape and the splitting of a single fold into
two. It has however been mentioned that this model has some dif-
ficulties to account for snap back phenomena during unloading
(see Remark 5 in Guinot et al. (2012)). In the present work, some
assumptions on the kinematics are discussed and a new proposal
is made to improve the model. It is shown that the choice of the
rod reference line is important when large relative displacements
in the cross-section are considered. A new proposal is investigated
and validated on the classical example treated in Seffen and
Pellegrino (1999) and Guinot et al. (2012): the creation of a fold
under a pure bending moment prescribed by opposite rotations
at ends. The improved model, for which the rod line is taken as
the centerline, is able to account for the snap back phenomenon
for this example. This improved model is then validated by quan-
titative comparisons with dynamic deployment experiments pre-
sented in Seffen and Pellegrino (1999).

In the following, Section 2 begins to recall the foundations of
the model presented in the previous work (Guinot et al., 2012),
i.e. the basic assumptions about the kinematics that allow to
reduce the shell model to a rod one. The choice of the rod reference
line is discussed and the case in which the rod line is taken as the
centerline is developed. The strain and kinetic energies of the rod
model are then obtained. The Hamilton Principle is used to imple-
ment the model in the finite element software COMSOL
Multiphysics (2011) that performs an automatic differentiation of
the energies to obtain the weak formulation of the problem. The
next sections are devoted to numerical examples.

In Section 3, a tape spring submitted to opposite cross-section
rotations at ends is studied. The overall response (moment versus
prescribed rotations at ends) is compared for the previous model,
the proposed new model and the shell model. The results show
that, contrary to the previous model, the proposed model is able
to capture the snap back during the unloading of the prescribed
rotations. This result is confirmed by a path-following approach
that allows the computation of the whole equilibrium paths, which
are consistent with the critical angles at which the snap-through
occur for the two rod models. The fold properties are also com-
pared for the shell model and the proposed new model.

In Section 4, the dynamic deployment of a folded tape spring is
considered. The improved model is applied to the experiments

presented in the work of Seffen and Pellegrino (1999) and
quantitative comparisons are analyzed.

2. The rod model

2.1. Kinematic description and basic assumptions

A tape spring is regarded as a shell that can be assimilated to a
rod with a thin-walled cross-section. In the initial configuration,
the middle surface of the shell is supposed to result from the extru-
sion of a circular cross-section curve along a straight rod line, as
shown in Fig. 2. More precisely, we construct a fixed orthonormal
frame O; e1; e2; e3ð Þ such that the initial middle surface results from
the extrusion along e1 of an arc of circle contained in the plane
O; e2; e3ð Þ. The line defined by O; e3ð Þ is chosen to be the axis of

symmetry of the arc in the plane O; e2; e3ð Þ with O an arbitrary
point on this axis of symmetry. The initial middle surface of the
tape is then symmetric with respect to the plane O; e1; e3ð Þ by con-
struction of the fixed orthonormal frame O; e1; e2; e3ð Þ. The axis
O; e1ð Þ is chosen to be the rod reference line in the initial

configuration.
We naturally introduce a curvilinear coordinate system

s1; s2ð Þ 2 0; L½ � � �a; a½ � to map the geometry of the tape, with L
the initial length of the tape and 2a the initial length of the
cross-section curve1. The material line defined by s1 2 0; L½ � and
s2 ¼ 0 is called the ‘bottom line’ (see Fig. 2).

At time t, in the deformed configuration, the position of a mate-
rial point M on the middle surface is given by:

OM s1; s2; tð Þ ¼ OG s1; tð Þ þ GM s1; s2; tð Þ; ð1Þ

where OG is the position vector in the deformed configuration of
the point which is the intersection of the rod line and the cross-sec-
tion plane in the undeformed configuration.

The rod model kinematics presented in Guinot et al. (2012)
relies on four assumptions:

(i) the cross-section curve remains in a plane after deformation,
(ii) the cross-section plane is orthogonal to the tangent vector of

the rod line in the deformed configuration,
(iii) the shape of the tape which is initially symmetric with

respect to the plane O; e1; e3ð Þ remains symmetric with
respect to this plane,

(iv) the cross-section curve is considered inextensible and
remains circular.

The two first assumptions are the classical hypotheses used in
the Euler–Bernoulli beam theory. The symmetry assumption (iii)
then involves that the motion of the rod line is restrained to the
plane O; e1; e3ð Þ: the displacement of a point G on the rod line is
given by the two components u1 s1; tð Þ and u3 s1; tð Þ and the rotation

Fig. 1. Folding of a tape spring.

1 The initial length of the cross section curve was set to a in the previous work
(Guinot et al., 2012). It is here set to 2a to obtain more concise expressions in the
following.
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