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a b s t r a c t

A phenomenological model is proposed for characterizing rate-independent hysteresis exhibited by pre-
conditioned soft tissues. The preconditioned tissue is modeled as an isotropic composite of a hyperelastic
component and a dissipative (inelastic) component. Specifically, the constitutive equations are hyperelas-
tic in the sense that the stress is determined by derivatives of a strain energy function. Inelasticity of the
dissipative component is controlled by a yield function with different functional forms for the hardening
variable during deformation loading and unloading. The constitutive equations proposed in this paper are
simple. In particular, they depend on only seven material constants: three controlling the response of the
elastic component and the remainder controlling the response of the dissipative component. More impor-
tantly, the material constants can be determined to match rather general loading and unloading behavior.
It is observed that the hysteretic response of the model compares well with experimental data for passive
uniaxial loading/unloading of Manduca muscle. Moreover, the present model treats partial loading and
reloading of preconditioned tissue as elastic–plastic response, which is different from the treatment of
pseudo-elastic models used in the literature.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Most biological soft tissues are inhomogeneous, nearly incom-
pressible materials that exhibit nonlinear inelastic (viscoelastic/
viscoplastic) response. Many of these soft tissues are reinforced by
fiber families which generally consist of collagen and elastin. The
material orientation of these fibers along with the fiber constituents
play a dominant role in determining the anisotropic mechanical
properties of the tissue. Phenomenological models which include
specific fiber orientations have been considered in Holzapfel
(2001) and Rubin and Bodner (2002). However, for some applica-
tions, it is sufficient to model these tissues as isotropic materials.

In general, the material response of the tissue is rate-dependent
and inelastic. More specifically, cyclic loading of tissues at constant
strain rate between fixed stress or strain limits typically exhibits
time-dependent inelastic hysteresis loops that shift with each
cycle towards a steady-state hysteresis loop. As an example,
Fig. 1. shows the steady-state hysteresis loop for passive cyclic uni-
axial stress loading of a Manduca muscle (Dorfmann et al., 2008).

Fung et al. (1972, 1993) observed that this steady-state hyster-
esis loop is relatively insensitive to the magnitude of the constant
strain rate over more than two orders of magnitude of strain rate.

This steady-state hysteresis loop characterizes the state of the
material which is referred to here as preconditioned. The transi-
tional process towards this preconditioned state is referred to here
as preconditioning. Moreover, it is noted that the hysteresis loops
of the preconditioned tissue depend on the magnitudes of strain
or stress defining the limits of the cycles.

Several researchers have experimentally observed this insensi-
tivity of the response of the preconditioned soft tissues to strain
rate. Specifically, the effect was observed for biaxial stretching of
rabbit skin in Lanir and Fung (1974a,b) and for excised skin in
Pereira et al. (1991). Zheng et al. (1999) found that the effective
Young’s modulus of limb soft tissue was fairly rate insensitive
and Vogel (1972) reported that the strain to failure of rat skin
was also rate independent.

Often, the hysteresis loop of the preconditioned tissue is
ignored and the tissue is modeled as being a hyperelastic material.
Since a hyperelastic material exhibits a single loading/unloading
curve it is necessary to decide whether the loading curve, the
unloading curve or some average of the two curves in the actual
preconditioned hysteresis loop will be used to calibrate the strain
energy function for the approximate hyperelastic model. For exam-
ple, Hendriks et al. (2004, 2006) used a Mooney–Rivlin model for
human skin and Shergold and Fleck (2005) and Shergold et al.
(2006) used the Ogden model for human skin and pig skin,
respectively.
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The most common model used to characterize the hysteresis
loop of a preconditioned tissue was proposed by Fung et al.
(1972) and Fung (1993), who suggested that the tissue can be
modeled by two hyperelastic materials: one characterizing the
loading curve and the other characterizing the unloading curve.
This material response is called pseudo-elasticity. In particular, a
single strain energy function is used with different material con-
stants for the loading and unloading curves.

Within the context of pseudo-elastic models, it is noted that
Tong and Fung (1976) developed a strain energy function for mod-
eling the response to biaxial stretching of rabbit skin observed in
the experiments in Lanir and Fung (1974a,b). This model had a
number of material parameters which were difficult to determine
from experimental data and it was found to be too sensitive to
changes in the bounds of the biaxial loading. Yin et al. (1986) mod-
ified the pseudo-elastic strain energy function in this model to
reduce the number of material constants to a nearly ‘‘minimum’’
set needed to match experimental data. Further modification of
this pseudo-elastic energy function can be found in Chaudhrya
et al. (1998) and Gambarotta et al. (2005).

Dorfmann et al. (2007, 2008) and Paetsch et al. (2012) exploited
the isotropic pseudo-elastic model developed by Ogden and
Roxburgh (1999) to characterize the passive response of muscle
tissue. In this model, the strain energy function is taken in the form
W ¼WðF;gÞ, where F is the deformation gradient tensor. The addi-
tional variable g is inactive (remains constant) during loading and
is a specified function g ¼ gðFÞ during unloading. The functional
form for g is discussed in Ogden and Roxburgh (1999), Dorfmann
and Ogden (2003, 2004), Dorfmann et al. (2007) and Paetsch
et al. (2012). In particular, the model in Dorfmann and Ogden
(2003) is proposed for loading, partial or complete unloading and
subsequent reloading and unloading. However, the notion of load-
ing/unloading in this model is unclear and the determination of g
for general loading situations is complicated.

A single loading/unloading curve associated with the Mullins
effect (Mullins, 1969; Diani et al., 2009) looks identical to that
for a preconditioned tissue. In fact, the strain energy function used
to model the Mullins effect has the same form W ¼WðF;gÞ. How-
ever, for the Mullins effect g is used to characterize damage that
only occurs when loading is applied beyond the previous maxi-
mum point of loading. Therefore, for the Mullins effect unloading
and reloading occur on the same curve with no hysteresis until
the material is further damaged. In contrast, unloading and reload-
ing of a preconditioned tissue occur on different curves with hys-
teresis always being present.

Viscoelastic (Sverdlik and Lanir, 2002) and elastic-viscoplastic
(Rubin and Bodner, 2002; Mazza et al., 2005) constitutive equa-
tions have been developed which can model the time dependent

response of tissues and the process of preconditioning. However,
there is still a need for a simple model that characterizes dissipa-
tion of the hysteresis loop of a preconditioned tissue. Conse-
quently, the objective of this work is to develop simple isotropic
constitutive equations for large deformations of preconditioned
biological soft tissues which exhibit rate-independent hysteresis
curves and which are valid for general loading histories. In contrast
with the standard pseudo-elastic formulation, here the precondi-
tioned tissue is modeled as a composite of a hyperelastic compo-
nent and a dissipative component. Specifically, the dissipative
component is modeled as a rate-independent elastic–plastic mate-
rial using a yield function, which depends on the elastic distor-
tional deformation of the inelastic component and on a
hardening variable. Furthermore, in contrast with the standard
uniaxial stress response of metals for cyclic loading, the axial stress
in a preconditioned tissue does not change sign during unloading
until the axial strain changes sign. To account for this fact, the
hardening variable is taken to be a function of the total distortional
deformation which vanishes in the unstressed reference state of
the tissue. Also, different functional forms for the hardening vari-
able are proposed for deformation loading and unloading, which
allow for easy modeling of the hysteresis loop exhibited by precon-
ditioned tissues.

2. Basic equations of the preconditioned tissue

This section briefly reviews constitutive equations for a nonlin-
ear isotropic elastic material and provides background for the
developments in the following sections. To this end, it is recalled
that a material point X in the fixed reference configuration moves
to the point x in the present configuration at time t, with the defor-
mation gradient F and the dilatation J defined by

F ¼ @x=@X; J ¼ detðFÞ > 0 ð1Þ

Also, the velocity v of a material point, the velocity gradient L and
the rate of deformation tensor D are defined by

v ¼ _x; L ¼ @v=@x; D ¼ 1
2

Lþ LT
� �

ð2Þ

where the superposed dot denotes material time differentiation
holding X fixed.

It can be shown that F and J satisfy the evolution equations

_F ¼ LF; _J ¼ J D � Ið Þ ð3Þ

where I is the second order unity tensor and A � B ¼ tr ABT
� �

denotes the inner product between two second order tensors fA;Bg.
The preconditioned tissue is considered to be a composite of an

elastic component and a dissipative component. In particular, the
specific (per unit mass) strain energy R of the tissue is modeled
as a sum of the specific strain energy Re of the elastic component
and the specific strain energy Rd of the dissipative component

R ¼ Re þ Rd ð4Þ

Moreover, the total Cauchy stress T in this model separates addi-
tively into two parts

T ¼ Te þ Td ð5Þ

where Te is the stress in the elastic component and Td is the stress
in the dissipative component. Within the context of the purely
mechanical theory, the rate of material dissipation is given by

D ¼ T � D� q _R P 0 ð6Þ

where the conservation of mass relates the mass density q0 in the
reference configuration to the mass density q in the present
configuration

λ

Π

Fig. 1. Comparison of the theoretical model proposed here (Theory) and the
experimental data (Exp.) in Dorfmann et al. (2008) for cyclic uniaxial stress loading/
unloading of a Manduca muscle.
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