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Approximate expressions for the macroscopic in-plane elastic and creep coefficients of brick masonry
with a regular pattern are derived in closed form, using a homogenization approach for periodic media.
A microscopic displacement field fulfilling suitable periodicity boundary conditions, and depending on a
limited number of degrees of freedom, is formulated over any masonry Representative Volume Element
(RVE). According to this field, closed-form expressions for the macroscopic elastic constants are obtained
at various degrees of approximation, either using a Method of Cells-type approach, or minimizing the
potential energy of the RVE subjected to any given macroscopic stress. Eventually, the results are
extended to the description of the global creep behavior of brickwork under service loads, assuming
the creep laws of units and mortar to be expressed by Prony series. Using the FE solution as a benchmark,
the proposed approach is found to accurately match both the macroscopic constitutive law in linear elas-
ticity and the time evolution of the macroscopic strains of brickwork under sustained macroscopic stress.
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1. Introduction

Predicting the global (or macroscopic, or effective) mechanical
properties of heterogeneous media from those of the individual
components is a goal that many authors have tried to achieve.
The advantages of this approach are manifold. When dealing with
fiber reinforced composites, for instance, a material with pre-
scribed macroscopic properties can be designed by properly select-
ing nature, size and orientation of the fibers. In the case of
masonry, tests on full scale specimens are costly and require
cumbersome devices. Also, in the case of historic buildings, large
specimens are usually impossible to take. Thus, performing tests
on brick and mortar samples can be a simpler and feasible alterna-
tive, provided that reliable formulas to predict the macroscopic
properties of masonry are available.

In linear elasticity, several authors have derived expressions for
the effective properties of masonry, which is macroscopically
orthotropic if made up by regularly spaced units. This was done
e.g., by Pande et al. (1989), who exploited results previously
obtained by Salamon (1968) for stratified rock to obtain the five
macroscopic elastic constants of masonry, assumed to be repre-
sented by an equivalent transversely isotropic material. Later,
Pietruszczak and Niu (1992) used an approach typical of the
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mechanics of composite materials, in which head joints are consid-
ered as uniformly dispersed weak inclusions and bed joints as con-
tinuous planes of weakness. Refined finite element models, such as
those proposed by Anthoine (1995) for periodic masonry, or by
Cluni and Gusella (2004) for quasi-periodic masonry, are supposed
to predict the macroscopic behavior more accurately. As pointed
out by Zucchini and Lourenco (2002), the analytical approaches
proposed by Pande et al. (1989) or Pietruszczak and Niu (1992)
give unreliable predictions if units and mortar have elastic moduli
differing by an order of magnitude or more. Accordingly, these
authors proposed approximated displacement (and stress) fields
for any Representative Volume Element (RVE), defined by a
reduced number of variables, and derived the macroscopic elastic
stress-strain law by prescribing approximate equilibrium and
compatibility conditions at the boundaries of the different parts
of the RVE. Their predictions were found to be sufficiently accurate
for any ratio of the elastic moduli of brick and mortar by compar-
isons with FE analyses. This approach allows closed-form expres-
sions for the macroscopic in- and out-of-plane shear moduli to
be obtained, whereas Young’s moduli and Poisson’s ratios are
numerically computed.

The macroscopic behavior of masonry beyond the elastic field
was mathematically described by Pietruszczak and Niu (1992),
taking into account the elastoplastic behavior of the constituents.
Their approach allows the macroscopic failure surface to be
determined. Alternatively, an approach based on limit analysis
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for periodic brickwork can be used to derive these surfaces without
any incremental analysis (Milani et al., 2006). Damage effects in
the constituents were taken into account e.g., by Luciano and
Sacco (1998), Zucchini and Lourengo (2007), and Shieh-Beygi and
Pietruszczak (2008), to describe the brittle post-peak behavior
experimentally observed in tests on masonry specimens. More
recently, Sacco (2009) derived the macroscopic behavior of 2D
brickwork in the nonlinear range by assuming damage and friction
effects to develop only in the mortar joints, and applying classical
homogenization techniques for periodic media to any RVE.

So far, little attention has been devoted to the mathematical
description of the long-term behavior of masonry under sustained
loads. Indeed, creep effects in masonry are quite significant, as
shown by the laboratory tests carried out by Shrive et al. (1997)
or by Sayed-Ahmed et al. (1998), and by the evolution of displace-
ments in full-scale buildings monitored by Hughes and Harvey
(1995). According to numerical analyses carried out on 3D finite
element models of header bond and Flemish bond masonry walls
subjected to sustained vertical load (Taliercio, 2013), the time evo-
lution of the vertical macroscopic creep strain turns out to be
nearly unaffected by the brick pattern. A simplified 2D layered
model is capable to predict the experimentally measured creep
strain (Brooks, 1990) with sufficient accuracy for practical pur-
poses. Under stress conditions other than vertical and uniaxial, a
layered model might not give reliable predictions.

Despite the importance of creep phenomena, few authors have
tried to formulate mathematical expressions for the macroscopic
creep coefficients of brick masonry. Brooks (1986), for instance,
extended formulas previously proposed in linear elasticity to
mathematically define the creep compliance of masonry under
sustained vertical stress, by simply replacing the elastic moduli
of the constituents by some effective moduli. Recently, Cecchi
and Tralli (2012) proposed an analytical model based on homoge-
nization procedures for periodic media; confining creep phenom-
ena into joints and reducing joints to interfaces, closed-form
expressions for the macroscopic creep coefficients can be obtained.
The reliability of these expressions has still to be assessed, e.g., by
comparisons with accurate finite element analyses.

This paper aims at deriving analytical expressions for the mac-
roscopic elastic and creep coefficients of in-plane loaded masonry
with regular brick pattern. The proposed approach has similarities
with both the so-called Method of Cells (MoC), originally proposed
by Aboudi (1991) to predict the macroscopic mechanical behavior
of periodic unidirectional fiber-reinforced composites (in the linear
elastic, linear viscoelastic and plastic range), and with the already
quoted approach employed by Zucchini and Lourenco (2002).

Whereas in other papers dealing with the same subject closed-
form expressions only for some of the macroscopic elastic con-
stants are proposed (see Section 3), here all the in-plane elastic
constants (Young’s moduli, Poisson’s ratio and shear modulus)
are given analytical expressions. Another novelty of the proposed
approach is that also the macroscopic in-plane creep coefficients
can be analytically evaluated.

The layout of the paper is as follows. First, in Section 2.1 the
fundamentals of homogenization theory for periodic media are
briefly recalled. In particular, in Section 2.2 the Reuss and Voigt
bounds for the macroscopic elastic stiffness of any heterogeneous
medium are specialized to periodic masonry: these bounds will
be used in the following sections to define the possible range of
variation of any theoretical estimate for the macroscopic elastic
constants. Then, in Section 3 a state-of-the-art is presented on
some of the closed-form expressions proposed so far for the mac-
roscopic elastic and creep coefficients of masonry. In Section 4 the
original approach proposed to derive the macroscopic properties of
masonry is illustrated, and applied to estimate the macroscopic
in-plane Young’s moduli and Poisson’s ratio in Section 4.1 and

the in-plane shear modulus in Section 4.2. It is shown how the
expressions obtained in the elastic field can be extended to
describe the macroscopic creep behavior of masonry. In Section 5
the accuracy of the analytical expressions derived in Section 4 is
assessed through comparisons with the results of refined finite ele-
ment analyses and with closed-form expressions available in the
literature, recalled in Section 3. Finally, in Section 6 the main
findings of the work are summarized and possible future
developments are outlined.

A detailed list of the symbols used in the text is provided in
Appendix B.

2. Homogenization theory for periodic media: a brief outline

In this section, some fundamental concepts of homogenization
theory for periodic media are briefly recalled. Readers are referred
e.g., to Nemat-Nasser and Hori (1993) for a detailed discussion on
this subject.

2.1. Macroscopic elastic tensor

When dealing with heterogeneous media, it is customary to
replace the real medium by a ‘homogenized’ one and define its glo-
bal (or macroscopic) properties through the analysis of a Represen-
tative Volume Element (RVE). The RVE is the smallest part of the
real medium that contains all the information required to com-
pletely characterize its average mechanical behavior. If the med-
ium is periodic (as in the case of brickwork with a regular
pattern), a single ‘unit cell’ (V) can be used as RVE. Fig. 1(a) shows
a possible choice for the RVE of running bond or header bond brick-
work. The macroscopic constitutive law establishes a relationship
between macroscopic stresses (X) and strains (E), which are
defined as the volume averages, over the RVE, of the corresponding
microscopic variables:

~ 1 | ewav. E= [ ewav. M)

(i

In particular, as the microscopic strain € must be periodic, neglect-
ing rigid body motions the microscopic displacement field u must
be of the form

u=E-x+1, (2)

where 1 is periodic over V. Fig. 1(b) and (c) shows RVE’s deformed
according to Eq. (2) under macroscopic vertical compression and
shear, respectively.

In linear elasticity, the macroscopic constitutive law can be
alternatively written as X =D"":E or as E=(C"":X. DWm

denotes the macroscopic stiffness tensor, and C"™ its inverse (also

called macroscopic flexibility tensor). In the 2D case, assuming
masonry to be macroscopically orthotropic, both tensors are
defined by four independent elastic constants. From here onwards,
x; denotes an axis parallel to the bed joints and to the mid-plane of
the wall, x, an axis parallel to the head joints and to the mid-plane
of the wall, and x3 an axis parallel to the wall thickness (see
Fig. 1(a)). Under in-plane stress, and assuming plane stress condi-
tions, the macroscopic elastic constitutive law can be written as

Eq 1/E, —Va1/E2 0 Zn
Ey = | —vi2/E 1/E, 0 |, (3)
2E12 0 0 1/G12 Z:12

where E; and E, are macroscopic Young’s moduli, v{; and v,; are
macroscopic Poisson’s ratios (with vi2/E; = v21/E;), and Gy, is the
macroscopic in-plane shear modulus.
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