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a b s t r a c t

The paper presents a new finite element (FE) model for the stress analysis of soft solids with a growing
mass based on the work of Lubarda and Hoger (2002). Contrary to the traditional numerical methods
emphasizing on the influence of growth on constitutive equations, an equivalent body force is firstly
detected, which is resulted from the linearization of the nonlinear equation and acts as the driver for
material growth in the numerical aspect. In the algorithm, only minor correction on the traditional
tangent modulus is needed to take the growth effects into consideration and its objectivity could be
guaranteed comparing with the traditional method. To solve the resulted equation in time domain, both
explicit and implicit integration algorithms are developed, where the growth tensor is updated as an
internal variable of Gauss point. The explicit updating scheme shows higher efficiency, while the implicit
one seems to be more robust and accurate. The algorithm validation and its good performance are
demonstrated by several two-dimensional examples, including free growth, constrained growth and
stress dependent growth.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Soft materials with a growing mass have drawn wide attentions
in recent years, which are complex mechanical materials with
typical nonlinear, anisotropic, large strain and inhomogeneous
behaviors (Humphrey, 2003; Menzel and Kuhl, 2012).

In the past two decades, continuum theories handling growth
phenomena of soft solids within the framework of thermody-
namics are well established (Menzel and Kuhl, 2012). The key
kinematic assumption is the multiplicative decomposition of
deformation gradient tensor into a growth part and an elastic defor-
mation part, which was first adopted in growth mechanics by
Rodriguez et al. (1994) to analyze the growth-induced residual
stress of biomaterials. The decomposition was originally introduced
by Kröner (1959), and then Lee (1969) and Stojanović et al. (1964)
made applications to elasto-plastic and thermoelasticity problems
at finite strain, respectively. Owing to their work, growth models
based on the multiplicative decomposition are predominant in
the current literatures for material growth, such as the contribu-
tions by Maugin and Imatani (2003), Epstein and Maugin (2000),
Kuhl and Steinmann (2003), Lubarda and Hoger (2002), Loret and

Simões (2005), Ganghoffer (2013) and Ganghoffer et al. (2014).
Other recent developments could be referred to Ciarletta and
Maugin (2011) and Ciarletta et al. (2011). In their work, a second
gradient theory for material growth and remodeling is developed,
which shows that evolution of structural changes is governed by
Eshelby-like stress and hyperstress. In addition, another noticeable
progress was made by Yavari (2010), in which the growth mechan-
ics was formulated within the context of differential geometry.
Ganghoffer and Sokolowski (2014) proposed a micromechanical
approach in which the volumetric and surface growth is described
in the framework of shape optimization.

Based on the multiplicative decomposition, many theoretical
explorations towards engineering applications have been carried
out in recent years, such as growth of soft material under geomet-
rical constraint (Ben Amar and Ciarletta, 2010), growing arteries
(Goriely and Vandiver, 2010) and growth-induced instabilities
and folding in tubular organs (Ben Amar and Goriely, 2005;
Ciarletta and Ben Amar, 2012). These works shed light on some
basic physical mechanisms of phenomena in growing materials
and may provide new methodologies for the studies of growth
mechanics. For further background information of growth mechan-
ics, readers are referred to state-of-the-art reviews by Taber
(1995), Humphrey (2003), Ambrosi et al. (2011), Cowin (2011)
and Jones and Chapman (2012) and the references therein. How-
ever, as indicated in the above referred papers, analytical methods
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may be helpless to describe the evolution of growth which is very
complicated but important to understand it better.

In the numerical aspect, there are also many elaborations based
on the multiplicative decomposition. An analogy between the con-
cept of thermal strain in finite deformation and the growth tensor
has been made by Feng and coworkers. Based on the idea, they
have studied the surface folding of esophageal mucosa (Li et al.,
2011a) and surface wrinkling of core–shell structure (Cao et al.,
2011; Li et al., 2011b) with the aid of commercial software, Abaqus.
Their works make the growth modeling go a big step from labs to
engineering applications. However, mass generation or sorption
and their influence on material constitutive equations are not fully
considered in their model. It seems to be unknown that whether
the critical growth factor is in accordance with the theoretical
one or not, in spite that good results of buckling mode could be
observed in their work. Based on Lubarda and Hoger’s work
(2002), Himpel et al. (2005) proposed a computational framework
to model isotropic multiplicative growth within an implicit nonlin-
ear finite element setting, in which the isotropic stretch ratio is
introduced as an internal variable at the integration points. A
new incremental tangent modulus is developed in the intermedi-
ate or current configuration to reflect the growth influence on
the material. Based on the proposed framework, they made several
noticeable attempts towards patient specific simulations, such as
stress-induced arterial wall growth (Kuhl et al., 2007), cardiac
growth, dilation and wall thickening (Göktepe et al., 2010a,b),
growing skins beyond the physiological limit (Buganza Tepole
et al., 2012) and so on. A summary of their model and related appli-
cations could be referred to (Menzel and Kuhl, 2012; Kuhl, 2013).
However, the tangent modulus seems to be unsymmetric in some
cases (Himpel et al., 2005), which may lead to lower computational
efficiency for large scale problems. Meanwhile, the objectivity of
tangent modulus is not expounded in detail. In addition, Menzel
(2007) developed a remodeling framework for orthotropic con-
tinua, in which the reorientation of fiber families in multiplicative
anisotropic growth was illuminated. More recently, a stress-
induced volumetric material growth model in thermoelastic con-
tinua was developed by Vignes and Papadopoulos (2010), where
the material growth is regulated by a three-surface activation cri-
terion and corresponding flow rules. There are many other works
conducted within the context of mixture theory. For example,
Garikepati et al. (2004) proposed a coupling model of mass
transport and mechanics, in which the mass change amongst the
individual species rather than for a mass exchange with environ-
ment was considered. For an improvement version considering
the interactions between transport and mechanics is referred to
Narayanan et al. (2009). Similarly, Davol et al. (2008) also made
many attempts towards a general thermomechanical theory for a
mixture of growing elastic constituents with aim to model carti-
lage growth. Within the framework of the theory of porous media,
Ehlers et al. (2009) provided a continuum-biomechanical approach
for biological tissue, which extends the classical theory of mixture
towards immiscible materials. Though so many attempts have
been made for the numerical modeling of growth phenomena, it
is still hard to answer which one is the better. Since comparisons
of the results with the experiments or analytical solutions are rare,
even for the simple case. Actually, many results could only be
explained qualitatively in the current stage.

This contribution aims to develop a new computational frame-
work for modeling growth phenomena of soft material following
Lubarda and Hoger’s work (2002). Unlike the algorithm developed
by Himpel et al. (2005) and their follow-up works, which incorpo-
rates growth effects into tangent modulus, we introduce the objec-
tive Oldroyd stress rate to linearize the nonlinear equation in the
current configuration, which is a common practice in nonlinear
finite element method (Crisfield, 1997; Wriggers, 2008). Following

this line of thought, a new equivalent body force is emerged in the
linearized rate equation, which is related to the growth tensor,
growth rate, stress, mass generation rate, etc. The force is assured
to act as the driver to make the material grow in the numerical
aspect. To the authors’ knowledge, such kind of numerical imple-
mentations for the soft matter with a growing mass have not yet
been implemented. The tangent modulus in our model is symmet-
ric, which could be deduced by a subtle change of modulus in the
classical FE model without growing mass. The growth tensor and
its rate are updated at the Gauss points as internal variables and
are used to calculate the growing body force. The final equation
is time-dependent and the corresponding integration algorithms
are developed. In case the growth rate is dependent on the
mechanical quantities or the growth factor itself, an implicit inte-
gration scheme is implemented to stabilize the solution.

The paper is organized as follows. In Section 2, the theoretical
background for growth mechanics is briefly reviewed and an
objective constitutive law is proposed for the linearization of the
equation. In Section 3, the finite element implementation and its
linearized version are presented in detail. The mechanical variables
are updated via a prediction–correction algorithm and the equiva-
lent driving force should be calculated in the prediction step. Both
explicit and implicit schemes are explained to integrate the growth
tensor. Section 4 presents several numerical examples, including
free growth, constrained growth and stress dependent growth, so
as to validate the algorithm. Some analytical analyses on the
examples and comparison between the implicit and explicit
algorithm are also conducted in the section. Finally, conclusions
are made in Section 5.

2. Theory

2.1. Kinematics

Consider a continuous elastic body B described by a set of
material points X in the reference configuration. The motion of
body B is given as a one-parameter family of configuration
ut : B ! E3 and the location of point X at time t becomes

x ¼ utðXÞ ð1Þ

The description of the body at point x is referred to as the cur-
rent configuration. Let F ¼ @x=@X ¼ Grad x be the deformation
gradient tensor, then its multiplicative decomposition, as shown
in Fig. 1, is introduced as

Fig. 1. Decomposition of deformation gradient tensor into a growth part and an
elastic part.
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