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a b s t r a c t

The propagation of a semi-infinite line defect, contained in an infinite square-cell lattice is considered.
The defect is composed of particles lighter than those in the ambient lattice and it is assumed this defect
propagates with constant speed. Dispersion properties of the lattice are related to waves generated by the
propagating defect. In order to determine these properties, the Wiener–Hopf technique is applied.
Additional features, related to localisation along the defect are also identified. Analysis of the dispersion
relations for this lattice, from the kernel function inside the Wiener–Hopf equation, is carried out. The
solution of the Wiener–Hopf equation is presented for the case when an external load is applied
corresponding to an energy flux at infinity.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Large deformations occurring in composite materials can lead
to regions of plastic flow, where the formation of line inclusions
can occur (Özturk et al., 1991). When waves propagate through a
composite, defects within the composite can lead to localised
defect modes i.e. large deformations around the defects
(Movchan et al., 2007). Such large deformations can also drive
the growth of a defect or an inclusion through a composite. In this
article, the model for a growing line inclusion within a discrete lat-
tice, having particles which are lighter than those in the ambient
lattice, is considered. The model provides information of dispersion
properties of the lattice, and at particular frequencies, waves trav-
elling through the lattice may propagate only along the inclusion
or the ambient lattice. The former situation may enhance the
growth of the inclusion through the lattice and therefore it is
important to determine the frequencies which generate such
vibrating modes.

Lattice models describing defects propagating through discrete
structures have been the subject of many articles. In Slepyan
(2001a), the scalar problem of a dynamic crack moving with con-
stant speed through a homogeneous square-cell lattice is studied.
The dynamic crack can be considered as a sequential removal of
neighbouring bonds, along a row in the lattice, caused by feeding
waves which supply energy to the crack front bond (Slepyan,
2002). When this bond breaks, energy is released in the form of
dissipative waves which carry energy away from the front. The

problem of a fault moving through an elastic triangular lattice
was studied in Slepyan (2001c). For both the square and triangular
lattices, the wave dispersion properties for the lattice can be
deduced in explicit form.

Apart from the introduction of the dynamic crack, additional
inhomogeneities which also affect the dispersion properties in a
lattice or a continuum can be considered. An overview of several
models that reveal the dispersive nature of waves in continua
and periodic structures was presented in Movchan et al. (2012),
which also includes comparisons of the filtering effects of a
bi-atomic chain and a high-contrast periodic continuum. The
problem of a structured interface contained in a continuum was
also solved and the reflection and transmission due to the interface
were analysed. In Mishuris et al. (2009a), a square-cell lattice
containing a propagating crack, and composed of rows of particles
having contrasting mass, was analysed. The influence of this
additional inhomogeneity on the energy dissipation due to crack
propagation was also considered.

An inhomogeneous triangular lattice, composed of bonds with
contrasting stiffness in the principal lattice directions, can be found
in Nieves et al. (2013). This is based on a similar model of that
developed in Slepyan (2001c).

In all the above linear models, interaction between the particles
of the lattice is assumed to occur between the nearest neighbours
and the bonds connecting particles are assumed to be massless.
From these models, other useful properties of the fault, such as
the energy release rate may also be obtained.

In some of these models (Colquitt et al., 2012; Mishuris et al.,
2009b), a fracture criterion has been used to obtain information
about real time progression of the crack. In particular, this can
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reveal information about the formation and coalescence of voids
ahead of the crack front bond. An inhomogeneous square-cell lat-
tice containing a propagating fault, subjected to a remote sinusoi-
dal load was considered in Mishuris et al. (2009b). When a fracture
criterion is imposed on the crack path bonds, the problem becomes
non-linear. Numerical simulations have been used to calculate
average crack speeds and a good comparison has been found with
estimates from dispersion diagrams. Similar calculations for an
inhomogeneous triangular lattice have been carried out in
Colquitt et al. (2012). Extensions of this analysis have been used
to predict the propagation of an edge crack in a structured
thermo-elastic solid, where the crack propagation is driven by
rapid change in boundary temperature near the interface the crack
emanates from and the elastic waves generated by shocks induced
by the rapid temperature change (Carta et al., 2013).

It is also possible to find continuum models where the influence
of the material’s microstructure may be studied. The theory of cou-
ple-stress elasticity introduced in Koiter (1964), is designed to take
into account characteristic lengths associated with bending and
torsion within a material, and this allows the microstructural prop-
erties of a material to be studied. In Mishuris et al. (2012), this
model was used to study a Mode III semi-infinite crack propagating
at constant speed through a continuum that has a microstructure.
The Wiener–Hopf technique was also applied to solve this problem
and illustrations showing the effect of the material’s bending and
torsion characteristic lengths on the crack’s propagation were pre-
sented. The method was also extended to the case of a Mode III
crack propagating through an elastic material having a high rota-
tional inertia introduced through its microstructure in Morini
et al. (2013). There, the influence of the micro-rotational inertia
on the energy dissipation due to crack propagation was also ana-
lysed, as this dissipation can affect displacements in the vicinity
of the crack tip. It was shown that this rotational inertia may
enhance or diminish the energy dissipation associated with the
propagating crack, in comparison to its energy dissipation in the
model of classical elasticity.

The influence of the microstructure can also be determined
from models of discrete structures which have the same effective
properties as the corresponding homogenised medium. As an
example, the effect of the microstructure on the crack-tip behav-
iour for an edge crack contained in a slab, which is subjected to a
sinusoidal temperature load, was also investigated in Colquitt
et al. (2012). For this quasi-static thermoelastic problem, it was
shown that the ‘‘effective stress intensity factor’’ for the edge crack
in the triangular lattice was lower than that in the homogenised
lattice. This indicates that the introduction of microstructure in a
solid may lessen the possibility of crack propagation.

For the high-frequency regime of the applied load, a theory of
asymptotic homogenisation has been developed in Craster et al.
(2010). A continuum model is constructed from the standing wave
modes for the lattice problem, and the solution of this continuum
problem provides information about the microstructure.

The propagation of an inclusion within a lattice has also been
considered in Slepyan (2001b). Here, instead of the removal of sub-
sequent bonds in a row, giving rise to a crack, these bonds undergo
a transition in phase, i.e. a jump in stiffness, when the elongation of
the bonds reaches a critical point. Another way to interpret the
propagation of an inclusion within the lattice is to assume that
the inclusion is composed of particles of different mass to those
in the ambient lattice. This is discussed in the present paper. The
required dispersion properties are obtained from Colquitt et al.
(2013), where eigenfrequencies and eigenmodes, corresponding
to localised defect modes, for a finite line defect contained in a
square lattice were computed. For a long line defect, these eigen-
frequencies have been shown to lie in the range of frequencies pre-
dicted by the model for the infinite line defect (Osharovich and

Ayzenberg-Stepanenko, 2012). An illustrative example given in
Colquitt et al. (2013), shows a computation for the eigenfrequen-
cies for a line defect containing 20 particles having contrasting
mass compared to the ambient lattice. On Fig. 1, these frequencies
are shown by dashed horizontal lines. The solid curve in this figure,
depicts the dispersion curve of the infinite line defect model of
Osharovich and Ayzenberg-Stepanenko (2012), and it is possible
to see from this figure that this model can be used to predict the
complete range of the frequencies for a long finite line defect.
The same dispersion relation is also encountered in the work pre-
sented here. It is also noted that the density of the eigenfrequen-
cies for the finite line defect shown in Fig. 1, increases as we
approach the frequencies of the standing wave modes for the
infinite line defect, where the homogenised model for this defect
is applicable.

The diffraction of waves due to a semi-infinite line of rigid small
inclusions within a continuum, called a grating, has been studied in
Hills and Karp (1965). This problem has been solved using the Wie-
ner–Hopf technique (Noble, 1958; Hochstadt, 1989) and this solu-
tion has used to describe resonance modes for the grating as well
as the dispersive nature of this line defect (Hills, 1965; Hills and
Karp, 1965).

For finite length rigid line inclusions contained in an elastic
material, the complete solution has been obtained for this problem
in the case of when the ambient matrix is a bimaterial and the rigid
line inclusion is located along the interface of the two materials
Ballarini, 1990. Here the strength of the singularities found in the
solution near the tips of the inclusion have been determined and
compared with those in the problem of when there is a crack along
the interface in the bimaterial. A similar analysis has been given in
Dal Corso et al. (2008) and Bigoni et al. (2008), where the model for
a prestressed elastic material containing a rigid line inclusion
under Mode I and II loading has been considered. The influence
of the inclusion on the fracture patterns in this problem was also
studied and the analytical results were shown to give a good agree-
ment with those obtained in experiments.

A semi-infinite line defect is considered here which propagates
through a square-cell lattice. The structure of this article is as fol-
lows. In Section 2, the problem of the propagating semi-infinite
fault, composed of particles with reduced mass compared to the
ambient infinite square lattice, is analysed. The description of this
problem and the main notations are given in Section 2.1. In
Section 2.2, the dynamic equations are introduced for the

Fig. 1. Example computation from Colquitt et al. (2013), showing the comparison of
the eigenfrequencies (x) computed for a line defect composed of 20 particles with
different mass compared to that of the particles in the ambient lattice (indicated by
horizontal dashed lines) and the curve given for the infinite line defect in the lattice
(Osharovich and Ayzenberg-Stepanenko, 2012). Both are shown as functions of the
normalised wavenumber j=p. Here the ratio of the mass of the particles in the line
defect to the mass of the particles in the ambient lattice is 0.25.
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