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Logarithmic strains are increasingly used in constitutive modelling because of their advantageous prop-
erties. In this paper we study the physical interpretation of the components of the logarithmic strain ten-
sor in any arbitrary system of representation, which is crucial in formulating meaningful constitutive
models. We use the path-independence property of total logarithmic strains to propose different ficti-
tious paths which can be interpreted as a sum of infinitesimal engineering strain tensors. We show that
the angular (engineering) distortion measure is arguably not a good measure of shear and instead we pro-
pose area distortions which are an exact interpretation of the shear terms both for engineering and for
logarithmic strains. This new interpretation clearly explains the maximum obtained in some constitutive
models for the simple shear load case.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional constitutive modelling is frequently developed for
small (engineering) strains (Bathe, 1996; Kojic and Bathe, 2005).
The extension of these models to large strains is not obvious. There
are many fundamental issues when extending such models to large
strains, as for example objectivity and energy preservation during
elastic deformation processes (Eshraghi et al., 2013a,b; Holzapfel,
2000; Ogden, 1984), which do not usually deserve special attention
for small strains. One important decision to be made at large
strains is which stress and strain measures to employ.

In the small strain kinematically linear context the engineering
infinitesimal stress and strain measures are the ones employed
because distinction is not relevant among the different measures.
Engineers are used to engineering strains, so they have a rather
deep understanding of the physical meaning of their components.
In the large strain context, unfortunately there are many choices
for stress and strain measures and, of course, that choice strongly
affects the constitutive equations of the model, which is usually
formulated with a given strain measure in mind. Of course one
strain measure may always be mapped to any other strain mea-
sure, but for example, a constitutive equation linear in one strain
measure will not be so in any other measure. Hence, some funda-
mental conclusions obtained using one measure may not be valid
using others.
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The Green-Lagrange and Almansi-Euler deformation measures
are often used because of two reasons: they are directly obtained
from the deformation gradient and they naturally appear in the
nonlinear terms of the finite element formulations. However, these
deformation measures are not intuitive, even for uniaxial loading,
so using them in constitutive equations may bring difficulties
interpreting results or material constants of the models.

The large strain measures arguably most intuitive are the loga-
rithmic (Hencky or “true”) strain measures. As we will briefly
review below, they preserve the physical meaning of the trace
operator (and hence the volumetric and deviatoric strains), they
are additive in uniaxial situations and they are symmetric respect
to the percentage of stretching: doubling the length of an specimen
gives the same amount of logarithmic strain than halving the
length of the specimen, except for the change of sign. For logarith-
mic strains, the push-forward and pull-back operations are
performed using rotations, so they also preserve the metric.
Furthermore, in isotropic metals a linear hyperelastic relationship
between logarithmic strains and Kirchhoff stresses has been found
to be an accurate representation if the elastic strains are not too
large but only moderately large (Anand, 1979, 1986). This fact
added to the special structure of the exponential tensor operators
on logarithmic strains facilitate enormously the formulation of
elastoplastic constitutive models that are physically well
grounded, accurate and efficient for finite element implementa-
tion, both for the isotropic (Eshraghi et al., 2010; Eterovi¢ and
Bathe, 1990; Montdns and Bathe, 2005; Peric et al., 1992; Sim0,
1992; Weber and Anand, 1990) and anisotropic cases (Caminero
et al.,, 2011; Miehe et al., 2002; Papadopoulus and Lu, 1998). It
has been shown that logarithmic strains appear naturally as a


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2013.12.041&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2013.12.041
mailto:m.latorre.ferrus@upm.es
mailto:fco.montans@upm.es
http://dx.doi.org/10.1016/j.ijsolstr.2013.12.041
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

1508 M. Latorre, F,J. Montdns / International Journal of Solids and Structures 51 (2014) 1507-1515

consequence of the combination of hypoelasticity and hyperelas-
ticity into a single equation in the context of elastoplasticity (Xiao
et al., 2007).

Logarithmic strain measures are also increasingly being used in
highly nonlinear hyperelasticity to model the behavior of elasto-
mers and living tissues. For example, recent models based on
spline interpolation of experimental data are formulated using log-
arithmic strains, both for isotropic materials (Sussman and Bathe,
2009) and for anisotropic materials (Latorre and Montans, 2013;
Latorre and Montans, 2014). However these models necessitate
some experimental data, which must be correctly interpreted.
The correct interpretation of the components of the logarithmic
strain tensor in any system of representation is a key for obtaining
a correct and accurate description for such models. Furthermore, as
we show below, if a good understanding of the strain tensor is
achieved, some useful expressions involving functions of such ten-
sor may be obtained (Hoger, 1986; Jog, 2008).

The purpose of this paper is to make some progress in the inter-
pretation of the components of the logarithmic strain tensor in any
system of representation, paying special attention to the off-diag-
onal terms, and to link some conclusions with observed phenom-
ena in the literature when these measures are being used. In
particular, we are specially interested in elucidating a correct
meaning and a correct measure for the shear deformation. This is
of crucial importance in constitutive modelling.

The layout of the paper is as follows. First we briefly review
some well-known facts about general strains with the objective
of properly motivate the definition and the construction of the log-
arithmic strain tensor in such a way that the components of the
tensor may be better understood. Then we analyze some typical
shear deformation examples in order to explain the geometrical
meaning of the logarithmic strain measures and to understand
the limitations of these shear tests when used in constitutive
modelling.

2. General strain measures

The strain measure of a uniformly stretched longitudinal rod
with initial (time t,) and current (time t) total lengths Ly, and L,
respectively, may be expressed in multiple ways. It is well-known
that all those usual strain measures are given by the general Seth-
Hill formula (Seth, 1964)

Eo= (7 1) ©

where 1 =0x(X,t)/0X =L/Ly is the current stretch ratio, n is a
number that characterizes each uniaxial strain measure and x(X, t)
represents the motion of material points X € [0, L] at time t. The
identity A1=L/L, holds due to the homogeneous deformation
assumed along the rod. As it is widely known, the general formula
given in Eq. (1) can be used to locally define the strains in principal
directions of a three-dimensional deformation state. In that way,
Eq. (1) is generalized to
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where 4; are the principal stretches and N; are the principal direc-
tions of the stretch tensor U obtained from the right polar decom-
position, or equivalently

{Enz;(u“l) if n#0

. 3)
Ey =InU if n=0

with I being the second-order identity tensor.

From Egs. (2), one can easily calculate all the strain tensors E,,
including the case n =0, using the principal stretches /; and
the eigenvectors N; (previously computed). This way, since
(En); =N -E;N; = (if — 1)/n, any possible physical meaning for
unidimensional strains can obviously be interpreted in the same
manner along the principal stretching directions in the three-
dimensional case. However, from Eqs. (2) expressed in that way,
nothing can be said about the components of E, when these ten-
sors are represented in a general basis.

In order to understand the description of the cases n# 0 in a
general system of representation (not only in principal directions),
the general expression given in Eq. (3); for E, can be used. We will
use the deformation gradient U = 9x(X, t)/0X, where X(X, t) repre-
sents the motion of material points X with the rotation R removed,
which yields a compatible homogeneous rotationless deformation.
Hence, for example, the Biot strain tensor, obtained for n =1, is
E; =U-1=0u(X,t)/0X, where it can be seen that E; represents
the material gradient of the displacement field u(Xt) =
X(X,t) — X. For any pair of orthogonal unit vectors P and Q in the
reference configuration, see Fig. 1, we have
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which reveals the meaning of the components of E; in a reference
frame in which P and Q are basis vectors, that is, (E;)p, is the pro-
jection onto the P direction of the relative displacement
Aq =u(X+Q,t) —u(X,t) when the deformation is assumed to be
homogeneous in the solid. Note that if P is not a principal direction
of deformation, the diagonal components of E; can not be under-
stood as in the associated unidimensional case, that is, in general

(Ev)pp # 7p — 1 (5)

where /p = |p|, being p = UP the transformed vector into the cur-
rent configuration corresponding to the basis vector P. Aside, in this
case in which the rotation R is removed, E; is equivalent to the engi-
neering strain tensor & = sym(ou/0X) = ou/0X = E;. However, the
well-known physical descriptions of the diagonal and off-diagonal
components of & (¢pp ~ Zp — 1 and &pq = Ypy /2, being yp, the angular
distortion associated to directions P and Q) can only be assigned to
E; if lu| < 1, that is within the small strain framework.

The values n =2 and n = -2 provide the well-known Green-
Lagrange and Euler-Almansi strain tensors, respectively. If the first
of them is expressed by means of Eq. (3), it results in
E, = 1/2(U% —I). As before, one can get a physical interpretation
of the PQ-component of E; when this last expression is pre- and
post-multiplied by the orthogonal material basis vectors P and
Q. Proceeding in that way
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with /p = |p| and Zq = |q|. In this case, unlike for E; - see Eq. (3) -
the diagonal terms of E, correspond to the unidimensional E,-strain
measures of the fibers initially located along the reference frame
axes. In a general situation, however, these fibers are not disposed

q
p

Fig. 1. Deformation of two arbitrary orthogonal directions.
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