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a b s t r a c t

Different models of metamaterials have been developed to generate negative mass and/or negative mod-
ulus. The resulting mass and modulus in existing works, however, cannot be independently controlled.
The current study presents a new representative cell of elastic metamaterials in an effort to provide a
comprehensive model for generating negative mass and/or negative modulus. The current model consists
of a series of properly arranged rigid bodies and linear springs. By introducing both translational and
rotational motions in the representative cell, negative mass and negative modulus can be obtained in a
controlled manner. The mechanisms and conditions under which negative mass and/or negative modulus
can be achieved are studied in detail. Numerical examples indicate that by varying the design of the rep-
resentative cell, different properties of the material system can be reliably generated, i.e., double negative
(mass and modulus) or single negative (mass or modulus). The dynamic behaviour of the developed
material system under different loading frequencies is evaluated and the longitudinal elastic wave prop-
agation in such metamaterials is studied.

� 2014 Published by Elsevier Ltd.

1. Introduction

Metamaterials are typically artificial media designed to achieve
unusual properties, which are not commonly seen in nature.
Metamaterials have recently received significant attention from
the research community (Huang and Sun, 2011; Fang et al.,
2006) because of their potentials in designing new engineering
structures with advantageous properties. Although under static
loads typical structural materials have positive mass and elastic
modulus, apparent negative mass and/or modulus can be observed
when dynamic loading of a certain frequency is applied to properly
structured material systems, forming acoustic/elastic metamateri-
als. The development of acoustic/elastic metamaterials will poten-
tially enable the design of structures with unusual and attractive
features, such as acoustic cloak for waves, noise elimination, and
vibration reduction. Depending on the design of the material sys-
tems, the metamaterials can be single-negative (mass or modulus),
or double negative (mass and modulus).

Significant progress in electromagnetic metamaterials has been
achieved, from the earlier theoretical work on possible negative
electric permittivity and magnetic permeability (Veselago, 1968)
to the study of left-handed electromagnetic metamaterials and
the design of lens with negative indexes of refraction (Smith
et al., 2000; Pendry, 2000; Shelby et al., 2001). As the mechanical

counterpart, the study of acoustic/elastic metamaterials has also
received significant attention in recent years. By embedding heavy
spheres coated with soft silicone in epoxy, apparent negative mass
is observed at certain loading frequencies (Liu et al., 2000), which
introduced the general concept of using local mechanical reso-
nance to develop elastic metamaterials. The existence of negative
mass density of acoustic metamaterials, formed by distributed par-
ticles in fluids, has also been observed numerically (Larabi et al.,
2007; Mei et al., 2006). It is now well understood that negative
mass can be generated for acoustic/elastic metamaterials using
properly designed local mechanical resonators (Liu et al., 2005;
Milton and Willis, 2007; Yao et al., 2008; Lee et al., 2009a).

Negative modulus has been observed in typical acoustic/elastic
metamaterials. For a one dimensional acoustic metamaterial
developed by using periodic Helmholtz resonators (cavities) (Fang
et al., 2006), the experimental results show a negative group veloc-
ity, indicating a negative bulk modulus, similar to the phenomena
presented in Lee et al. (2009b). A one dimensional elastic metama-
terial consisting of periodic spring-mass cells also shows a negative
modulus under certain frequencies (Zhao et al., 2012). A two-
dimensional model of elastic metamaterials has been developed
based on a spring-mass system with local resonators, which shows
a frequency-dependent effective stiffness, being positive or
negative depending on the frequency (Huang and Sun, 2011). A
two-dimensional model of elastic metamaterials using a chiral
structure has also been developed (Liu et al., 2011), from
which negative mass and negative modulus can be generated
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simultaneously at certain frequencies. In this model the rotational
motion is included to induce negative modulus. In a recent study
(Bigoni et al., 2013), a similar concept is implemented in a two-
dimensional model of elastic metamaterials with the unit cell of
the metamaterial being formed by a central circular inclusion
connected to the matrix by several inclined supporting beams
(structured interface). From this material model negative group
velocities can be observed at certain frequencies. Review of the re-
cent development in the study of acoustic/elastic metamaterials
can be found in references (Zhao et al., 2012; Bigoni et al., 2013;
Fok et al., 2008). Typical applications of acoustic/elastic metamate-
rials include cloaking of acoustic/elastic waves and super resolu-
tion imaging (Zhao et al., 2012; Zhang et al., 2011; Parnell et al.,
2013). In these applications a major issue is how to precisely
control the effective material properties, both the mass and the
modulus. But in the existing works discussed above negative
modulus and negative mass cannot be controlled independently.

In the current study the generation of controllable negative
mass and modulus is studied theoretically based on a new repre-
sentative cell consisting of a series of springs and rigid bodies with
both translational and rotational motions. The results indicate that
the translational motion of the rigid bodies contribute directly to
the effective mass and the rotational motion of them controls the
effective modulus. By adjusting the geometry and material proper-
ties of the system, double negative metamaterials (negative mass
and modulus) can be reliably generated. The resulting wave
propagation and dispersion property are also discussed in detail.

2. Formulation of the problem

The problem considered is the harmonic mechanical response
of a one-dimensional metamaterial system, shown in Fig. 1. The
system is formed by a periodic structure with its representative
cell consisting of two central rigid bodies, two end rigid bodies
and linear elastic springs attached to the bodies, as shown in
Fig. 1(b). The detailed description of the two central bodies are gi-
ven in Fig. 1(c) and (d), which are circular in shape and can rotate
freely around a common axis at the centre. In addition to the cen-
tral springs attached to the axis, two springs are wrapped around
each central rigid body at a radius of R, as shown in Fig. 1(b)–(d).
The two central rigid bodies are under general plane motion and
have the same mass and moment of inertia about their mass cen-
tres (the centre), m and I. When assembled, the six springs in
Fig. 1(b) have elastic constants 2k and k0, respectively, as identified
in the figure, and are attached to two end rigid bodies of mass M.
The length of the cell is assumed to be L, which is determined by
the length of the springs and forms the characteristic length of
the cell. The current arrangement of the cell ensures that the major
geometries of the problem will remain unchanged during the mo-
tion. The two central rigid bodies will rotate in opposite directions
and will eliminate possible rotating motion of the end rigid bodies.
It should also be mentioned that the two central rigid bodies can be
arranged in such a way that the cell will be symmetrical in the
direction perpendicular to the plane considered, by sandwiching
one body in the middle of the other one in the thickness direction,
for example. The overall motion of the cell is then limited only to
the longitudinal direction and the transverse motion of the system
will be ignored. In the current model the free vibration of the sys-
tem and the damping effect have been ignored.

It should also be mentioned that in the current model shown in
Fig. 1 the springs will be under both tension and compression
during the general harmonic motion. In a real physical system,
the linear central springs can be designed to handle compression,
but for springs wrapping around the central rigid bodies compres-
sion may result in buckling. In the current model, each spring

wrapping around the central rigid bodies is actually two different
springs with opposite directions. For example, the top spring in
Fig. 1(c) represents a spring wrapping clockwise and attaching to
the right rigid body and a spring wrapping counterclockwise and
attaching to the left rigid body. Spring constant k0 in the model is
the difference between the constants of the two springs. The cen-
tral springs are initially compressed and then assembled into the
system. When balanced, the central springs will be under compres-
sion, but the springs wrapping around the central rigid body will
be under tension, forming initial tension in the springs. By properly
selecting the spring constants and the initial compression of the
central springs, buckling of springs can be minimized by keeping
the real wrapping spring mostly under tension during the har-
monic motion. The motion of the physical system is described by
the current model where k0 and k represent the effective spring
constants. With this in mind, in the current model for all springs
the spring constants are assumed to be the same under tension
and compression.

For the harmonic response of the system of frequency x, all
field variables will be in the general form of A ¼ Ae�ixt with A being
the magnitude of either the displacement or the force. For conve-
nience, in the following discussion the common term e�ixt will
be omitted and only the amplitudes of these variables will be
considered.

2.1. Effective modulus and effective mass

The response of the representative cell is governed by the dis-
placements of the end masses and the forces acting on them. The
displacements and forces at the two ends of the cell are denoted
by un and unþ1, and Fn and Fnþ1, respectively, as shown in Fig. 1.
The motion of the central masses is governed by both the transla-
tional displacement um at the centre, and the rotational displace-
ment hm. By analyzing the dynamic response of the cell, um and
hm can be determined as,

um ¼
1

1�x2=x2
1

unþ1 þ un

2
; ð1Þ

hm ¼
1

1�x2=x2
0

unþ1 � un

2R
; ð2Þ

where x1 and x0 are the natural frequencies of the central rigid
body, given by

x2
1 ¼

2ðk0 þ kÞ
m

; x2
0 ¼

2R2k0

G2m
; ð3Þ

with R being the transverse distance between two neighbouring
springs as illustrated in Fig. 1 and G being the radius of gyration
of the central rigid body, i.e., I ¼ mG2. Eqs. (1) and (2) show clearly
the resonance behaviour of both linear and angular motions, which
will affect the apparent mass and modulus of the representative
cell. The dynamic behaviour of the representative cell can be deter-
mined by using Eqs. (1) and (2) and solving the current dynamic
problem. The solution can be represented in terms of forces and
displacements at the ends of the cell as

1
2
ðFnþ1 þ FnÞ ¼ k�M

2
x2 þ k0

1�x2
0=x2

� �
ðunþ1 � unÞ; ð4Þ

Fnþ1 � Fn ¼ �x2 2M þ 2m
1�x2=x2

1

� �
unþ1 þ un

2
: ð5Þ

Eqs. (4) and (5) establish the relation between the average force ap-
plied to the cell and its deformation, and the relation between the
net force applied to the cell and the average acceleration of it,
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