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a b s t r a c t

In this study we compare three calculi listed in the title for analysis of structures involving uncertainty.
The main idea is based on the consideration that the maximum structural response predicted by the pre-
ferred theory ought to be minimal, and the minimum structural response predicted by the preferred the-
ory ought to be maximal, to constitute a lower overestimation. We present analytic results that allow one
to calculate the structural response via the interval, ellipsoidal or super-ellipsoidal calculus. We provide
several examples of truss structures and illustrate that in different situations, depending on the available
data, one of these calculi ought to be preferred. Conclusion is made on the preferable approach to be the
super-ellipsoidal calculus.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The ‘‘supermarket’’ of uncertainty analysis is quite large. Pate-
Cornell (1996) lists six possible alternatives. Elishakoff (1990) de-
scribes three possible major classes in approaching uncertainty.
There are: (a) probabilistic analysis involving probability densities
and probability distributions of considered random variables, (b)
fuzzy-sets based analysis that is based on the notion of the mem-
bership function, and (c) anti-optimization, or seeking for worst-
case scenarios, and associated optimization to reduce the effect
of the worst-case consequences. The latter technique is discussed
in detail in the monographs by Hlavaček et al. (2004) and Elishak-
off and Ohsaki (2010).

The central point of incorporating available, though a scarce,
data into the analysis is discussed in the paper by Wang et al.
(2008). In their study the authors advocate the idea that the choice
of the uncertainty analysis must be determined by the experimen-
tal data. Specifically, anti-optimization analysis may involve either
interval analysis as in the books by Moore (1966) and by Hansen
and Walster (2004) or ellipsoidal analysis as in the monographs
by Schweppe (1973), by Chernousko (1980, 1994) and by Ben-
Haim and Elishakoff (1990). The natural question arises: ‘‘Which
one, interval analysis or ellipsoidal analysis, ought to be preferred
to its counterpart?’’ Wang et al. (2008) advocated the idea that the
answer to the question depends on the experimental data;

specifically one should prefer the analysis that produces least value
for the maximum response so as to avoid overdesign.

In the recent article, Elishakoff and Bekel (2013) introduced
new anti-optimization modeling based on super-ellipsoids (see
Lame, 1818; Gardner, 1977; Sokolov, 2001), and derived analytical
results for the maximum response of some structures involving
uncertainty. This paper is a generalization of the two previous
studies, namely papers by Wang et al. (2008) and Elishakoff and
Bekel (2013). It proposes taking experimental data into account,
bounding these data with an appropriate geometrical figure for
two-dimensional uncertainty, namely a rectangle, ellipse or
super-ellipse, and calculating the extreme displacements of the
studied structure. We subscribe the philosophy articulated by
Oden et al. (2010): ‘‘. . . theory and observation – the fundamental
pillars of science – can be cast as mathematical models: mathe-
matical constructs that describes system and represent acknowl-
edge of the system in a usable form’’. Thus, this study combines
experimental and analytical approaches. Conclusions are made as
to the preference of the method that ought to be utilized. For other
applications of super ellipsoids in applied mechanics the reader
can consult with papers by Wang et al. (1994) and Ceribasi and
Altay (2009).

2. Analytic results

In this study we concentrate on structures subjected to two
independent uncertain loads; it is assumed that the experimental
data describing their uncertainty is provided. Three candidate
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figures that are utilized to bound these data are two-dimensional.
In addition, we consider the case when the expression of the re-
sponse of the structure is a linear equation. Indeed, if X denotes
the uncertain load applied on the node i, whereas Y denotes the
uncertain load applied on the node j, the expression of the dis-
placement u of the generic node k is expressible as follows

u ¼ pX þ qY ð1Þ

with p and q being the deterministic coefficients representing the
elements occurring in the kth line and the ith and jth columns of
the inverse of the stiffness matrix. Note that in the two-dimensional
uncertainty case under consideration may involve additional,
though determination forces which would lead to appropriate mod-
ification of Eq. (1).

Due to the linearity of the expression of the response of the
structure in Eq. (1) and the Kelly–Weiss theorem in the paper by
Ben-Haim and Elishakoff (1990), the extreme values of the dis-
placements will necessarily be on the boundary of the bounding
figure. A different method for each kind of bounding figure will
be used to determine the extreme values of a given displacement.
We will consider hereinafter three possible geometric figures that
can be selected to bound the available data.

2.1. Determination of the extreme values for a given data enclosed by a
rectangle

If one postulates the experimental data on (X,Y) to be repre-
sented by a rectangle, the extreme values of the response in Eq.
(1) will be found by conducting a comparison between the values
attained by the response function at the four vertices of the rectan-
gle. Indeed, it appears inadvisable to study the response evaluated
at other points inside the rectangle because of the linearity of the
expression of the response. Namely, for the specified value u⁄ of
the response in Eq. (1), the latter equation represents a line in
the coordinate system OXY. Different values of u = u⁄ correspond
to different, but parallel, lines since the slope of the line (1) is inde-
pendent of the value of u⁄ as depicted in Fig. 1. We have to estab-
lish the direction in which the value attained by u⁄ is increasing.
Then the maximum value of u⁄ is attained by either by the line
(1) or by the line (2), depending on the direction of increase of
the response. If the line (1) corresponds to the maximum response,
the line (2) is associated with the minimum one, and vice versa.
Line (3) in Fig. 1 corresponds to neither maximum nor minimum.

In the case that the line (1) with u ¼ u�1 turns out to be parallel
to none of the sides (as it occurs in Fig. 1), two of the four vertices
will lead to the extreme responses. Hereinafter, the points leading
to the extreme responses are circled.

If the line representing the constant response of the structure in
Eq. (1) with u = u⁄ is parallel to two sides of the rectangle (like in
the Fig. 2), all the points of that side will lead to the same response.
In such a special case, two of the four vertices will lead to the max-
imum response and the two other vertices will lead to the mini-
mum response.

Hence, one just needs to compare the values provided by the
four vertices to determine the extreme values of the response of
the structure.

2.2. Determination of the extreme values for a given data enclosed by
an ellipse

Let us now consider the case when the center of the ellipse is
located at the point C (Cx,Cy); the ellipse is inclined by an angle
a, as shown in Fig. 3. The equation of the sought displacement u
is again given by the Eq. (1).

In a first step, we consider the ellipse in its local coordinate sys-
tem which is centered at the origin 0, with semi-axes being along
with 0X and 0Y axes, respectively (Fig. 4). The semi-major axis of
this ellipse is denoted by a, whereas the semi-minor axis is desig-
nated by b.

Fig. 1. Lines representing a constant value of the response are parallel to none of
the sides of the rectangle (shared area contains experimental data).

Fig. 2. Lines representing a constant value of the response are parallel to two sides
of the rectangle (shared area contains experimental data).

Fig. 3. Ellipse centered on a given point C and inclined by an angle a.

Fig. 4. Ellipse in its local coordinate system.
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