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a b s t r a c t

In this paper a variational formulation of the equivalent eigenstrain method is established. A functional of
the Hashin–Shtrikman type is proposed such that the solution of the equivalent eigenstrain equation is a
unique minimizer of the functional. Moreover, it is also shown that the equivalent eigenstrain equation is
the Euler–Lagrange equation of the potential energy of the inclusions. An approximate solution of the
equivalent eigenstrain equation is then found as a minimizer of the functional on a finite dimensional
span of basic eigenstrains. Special attention is paid to possible symmetries of the problem. The variational
formulation is illustrated by determination of effective linear elastic properties. In particular, material
with a simple cubic microstructure is considered in detail. A solution for the polynomial radial basic
eigenstrains approximation is found. In particular, for the homogeneous eigenstrain approximation,
the effective moduli are derived in an exact closed form.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The equivalent eigenstrain method/principle is a cornerstone of
micromechanics. It states the equivalence of the stress state in a
heterogeneous linearly elastic solid and in a homogeneous solid
of the same shape, under the same loading, when the heterogene-
ities are replaced by an appropriate distribution of eigenstrains
(transformation strains). The method, also known as the equivalent
inclusion method (Mura, 1991), was first formulated and used by
Eshelby in his seminal paper (Eshelby, 1957). However, the result-
ing equivalent eigenstrain equation is exactly solvable only for an
isolated ellipsoidal inhomogeneity in an infinite solid. As a conse-
quence, numerous approximate approaches have been developed.

The most direct approach uses Taylor series expansions of the
eigenstrains (Moschovidis and Mura, 1975). In addition to a con-
vergence problem, a drawback of the expansion is that the exterior
part of the Eshelby operator does not map polynomial eigenstrains
into polynomial strains. Therefore, another level of approximation,
another Taylor series expansion, collocation method or finite
element method, is needed. Another pertinent problem with the
Eshelby operator is that its action is explicitly known, apart from
some special cases, only for an ellipsoidal inclusion in an infinite
domain. Thus non-elliptical inclusions and finite domains must
be treated by approximate methods. To simplify the problem, the
homogeneous eigenstrain approximation is commonly used as
the first level of approximation. Examples of higher order Taylor

series expansion are Fond et al. (2001) and Benedikt et al. (2006).
For problems with periodic micro-structure a Fourier series expan-
sion is a viable alternative (Nemat-Nasser and Hori, 1999); how-
ever, not without difficulties. The problem is that a Fourier series
expansion of a discontinuous function, and here the eigenstrain
and elasticity tensor are discontinuous across the material inter-
faces, is not absolutely convergent, and thus convergence of the
Cauchy product of Fourier series expansions of the eigenstrain
and elasticity tensor is not guaranteed. This problem is usually
avoided by using a homogeneous eigenstrain approximation. The
rather slow convergence of the Fourier series expansion can then
be improved by using Fast Fourier Transformations (Moulinec
and Suquet, 1998). A recent review of different approaches is given
in Zhou et al. (2013).

The aim of this paper is to overcome the difficulties mentioned
above. First, to find in principle a convergent approximation of the
eigenstrains, and then to demonstrate, by a particular example of
an application of the equivalent eigenstrain principle, that an exact
solution can be found without further simplifications. The first aim
is achieved by a variational formulation of the equivalent eigen-
strain equation, and the second aim by taking into account the
symmetry of the problem and developing an analysis that replaces
a finite domain by an infinite domain.

The paper has the following structure. Section 2 sets out the
mathematical notation. In Section 3 a variational formulation of
the eigenstrain equation is established. A functional, similar to
the Hashin–Shtrikman functional, is defined such that a solution
of the equivalent eigenstrain equation is a unique minimizer of this
functional. Then, restricting the minimization of the functional to a
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finite dimensional linear space of admissible eigenstrains, an
approximate solution of the equivalent eigenstrain equation is
found. It is shown that the eigenstrain approximation inherits
the symmetry of the problem. The section is concluded with an
observation that several functionals, each having its own merits,
give rise to an equivalent eigenstrain equation. In Section 4 the
determination of the effective linear elastic material properties is
discussed. It is explained what modifications are needed to justify
the replacement of the finite domain Eshelby tensor with the infi-
nite domain tensor. In Section 5 the method is illustrated for the
example of a simple cubic structure of spherical inclusions. Using
a radial eigenstrain approximation the Eshelby tensor of the simple
cubic structure is found in a closed form. Computation of the influ-
ence tensor is also explained in detail. It is proved that a general
radial eigenstrain approximation gives the same effective bulk
modulus of the cubic structure as the homogeneous eigenstrain
approximation. Determination of the effective shear moduli is
developed in Section 6 where a polynomial radial eigenstrain
approximation is used. It is shown that the optimal radial approx-
imation is given by a linear span of the homogeneous and qua-
dratic eigenstrains. Using only the homogeneous approximation,
the effective moduli first given by Cohen and Bergman (2003) are
recovered, but here in an exact form. The paper concludes with a
list of possible generalizations. Two appendices derive the Eshelby
tensors and their volume averages for radial eigenstrains.

2. Notation preliminaries

Direct tensor notation is used throughout the paper. Vectors,
second and fourth order tensors are denoted by a; a, and A. In com-
ponent notation with respect to the Cartesian basis vectors ei they
are a ¼ aiei; a ¼ aijei � ej and A ¼ Aijklei � ej � ek � el. The summa-
tion convention over repeated tensor indices is used. A vector
space of n-th order tensors is denoted by T n.

The identity second order tensor is denoted by i and the fourth
order symmetric identity by I. The symmetric tensor product of
two vectors a and b is denoted by sym a� bð Þ ¼ 1

2 a� bþ b� að Þ.
Symmetrization of a tensor A with respect to indices i and j is de-
noted by symijA. In particular sym12A ¼ Aijklsym ei � ej

� �
ek � el.

Transposition of a tensor A with respect to indices i and j is denoted
by tranijA. Thus tran24A ¼ Aijklei � el � ek � ej. If tranijA ¼ A, we say
that A is i$ j symmetric. Symmetric fourth order tensors have
by definition 1$ 2 and 3$ 4 symmetry. The symmetric part of
a second order tensor a is denoted by syma. The dot product of
two tensors, a single contraction, is denoted by a single dot, and
a double contraction by a colon. The gradient of a tensor field
a ¼ aðxÞ is given by grada ¼ @a=@x. In Cartesian coordinates xi we
have grada ¼ @a=@xi � ei. The divergence of a tensor field is given
as diva ¼ grada : i. For example, diva ¼ aij;jei where the index j after
the comma denotes partial differentiation with respect to xj.

A group of orthogonal second order tensors is denoted by O. Its
subgroup of rotations that rotates a cube into itself is called the octa-
hedral or cubic group and is denoted by C. (Bradley and Cracknell,
2010). For example, Rðei;p=2Þ and Rððe1 þ e2 þ e3Þ=

ffiffiffi
3
p

;2p=3Þ are
among its elements. Here Rðe; hÞ is a rotation with the axis e and
the angle of rotation h. The Rayleigh product (e.g. Bertram, 2005,
Ch. 1) of tensor A with Q 2 O is denoted by Q � A and is defined by

Q � A ¼ Q � Aijkl ei � ej � ek � el ¼ Aijkl Qei � Qej � Qek � Qel:

By direct calculation it follows that

Q � A : a
� �

¼ Q � A
� �

: Q � a
� �

¼: Q � A : Q � a ð1Þ

for arbitrary tensors A; a and Q 2 O. Let G be a subgroup of O. A ten-
sor function x # AðxÞ is G symmetric if AðQxÞ ¼ Q � AðxÞ for all

Q 2 G. In particular, if G ¼ O or G ¼ C, it is called an isotropic or a cu-
bic tensor function, respectively. IfA is a linear operator that maps a
tensor field a : y # aðyÞ into a tensor field Aa : x # AaðxÞ 2 T 2, then
A is called a G symmetric operator if

AaðQxÞ ¼ Q � AQ T � aðQ�Þ
� �

ðxÞ ð2Þ

for all a and x. If a is a constant tensor, then A acts as a fourth order
tensor field AðxÞwhich is a G symmetric tensor function. Needless to
say, all the above definitions naturally extend to tensors of arbitrary
orders.

The space of fourth order tensors with the minor symmetry is
an algebra where the multiplication is understood as the double
contraction. It is well known, see for example Walpole (1981)
or Jarić et al. (2008), that the subalgebra of tensors with both
the cubic and major symmetry is three dimensional. However,
assumption of major symmetry is redundant as the cubic and
minor symmetry imply the major symmetry. Symmetric fourth
order tensors with cubic symmetry are called cubic tensors. The
space of cubic tensors is thus three dimensional. Its basis tensors
are denoted by Ei; i ¼ 1;2;3, chosen such that the components of a
cubic tensor A are just its Cartesian components A1111;A1122 and
A1212. Thus

A ¼ A1111E1 þ A1122E2 þ A1212E3:

Multiplication is given by

aiEi : bjEj ¼ ða1b1 þ 2a2b2ÞE1 þ ða1b2 þ a2b1 þ a2b2ÞE2 þ 2a3b3E3;

ð3Þ

where the summation convention over the repeated indices i and j
is used. Therefore the algebra of fourth order symmetric tensors
with cubic symmetry is isomorphic to an algebra ðR3;þ; :Þ with
multiplication given by

a1; a2; a3Þ : ðb1; b2; b3Þ ¼ a1b1 þ 2a2b2; a1b2 þ a2b1 þ a2b2;2a3b3ð Þ:
ð4Þ

Clearly, the algebra is commutative. In the cubic basis an isotropic
tensor ki� iþ 2lI has a representation

ðkþ 2lÞE1 þ kE2 þ lE3: ð5Þ

A cubic tensor Z ¼ ziEi has three eigenvalues, f1 ¼ z1 þ 2z2; f2 ¼ z1 � z2

and f3 ¼ z3. The corresponding eigentensors are w1 ¼ i for

f1;w
ð1Þ
2 ¼ e1 � e1 � e2 � e2 and wð2Þ2 ¼ e1 � e1 � e3 � e3 for f2 and

wð1Þ3 ¼ sym e1 � e2ð Þ, wð2Þ3 ¼ sym e1 � e3ð Þ and wð3Þ3 ¼ sym e2 � e3ð Þ for
f3. Note that the eigentensors are universal; all cubic tensors have the
same eigentensors. They are called cubic eigentensors. To simplify the

notation we now write w2 and w3 instead of wð1Þ2 and wð1Þ3 . Expressing
the components zi with the eigenvalues we have

Z ¼ 1
3

f1 þ 2f2ð ÞE1 þ
1
3

f1 � f2ð ÞE2 þ f3E3: ð6Þ

The space of the symmetric fourth order isotropic tensor func-
tions is six dimensional. Here we use the following base:

X1 ¼ i� i;

X2 ¼ I;

X3ðrÞ ¼ i� r � r;

X4ðrÞ ¼ r � r � i;

X5ðrÞ ¼ sym r � eið Þ � sym r � eið Þ;
X6ðrÞ ¼ r � r � r � r: ð7Þ
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