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a b s t r a c t

In this work, the effect of the material microstructural interface between two materials (i.e., grain bound-
ary in polycrystalls) is adopted into a thermodynamic-based higher order strain gradient plasticity frame-
work. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due
to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the
grain boundary. The theory is developed based on the decomposition of the thermodynamic conjugate
forces into energetic and dissipative counterparts which provides the constitutive equations to have both
energetic and dissipative gradient length scales for the grain and grain boundary. The numerical solution
for the proposed framework is also presented here within the finite element context. The material param-
eters of the gradient framework are also calibrated using an extensive set of micro-scale experimental
measurements of thin metal films over a wide range of size and temperature of the samples.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that there is a distinct material behavior when
the relevant sizes approach material microstructure length scales
such as strong size dependency in the plastic response of the mate-
rials (e.g., Fleck et al., 1994; Ma and Clarke, 1995; Chen et al., 2007;
Espinosa et al., 2004; Vlassak et al., 2005; Chen et al., 2007; Chen
et al., 2011). Moreover, for microstructural optimization of mate-
rial properties, plastic deformation mechanisms on the grain level
play a significant role. A similar strengthening effect is also associ-
ated with decreasing the grain size in polycrystalline material due
to the increase in yield stress which is referred to as the Hall–Petch
effect (Hall, 1951; Petch, 1953).

Such effect in small scale metals can be described by numerous
theoretical and numerical models with different resolutions. How-
ever, over the aforementioned size scale range the number of dis-
locations is commonly so large that a continuum formulation is
required to describe deformation in an effective and computation-

ally robust manner (Niordson and Hutchinson, 2003). Therefore, it
is desirable to advance the theory of continuum plasticity to ac-
count for dimensional and microstructural constraints on disloca-
tion activity in the course of plasticity deformation. The
collective term for such plasticity models are strain gradient plas-
ticity theories, which have been proposed in a number of studies
after the work of Aifantis (1984) (in the spirit of the micromorphic
approach following the earlier works of Eringen and Suhubi (1964)
and Mindlin (1964)) in order to target the aforementioned size ef-
fect. Such continuum theories of plasticity break down at scales
when the numbers of dislocations are too small for them to be
treated collectively. By increasing the resolution of the theory
(e.g., Discrete Dislocation models), individual dislocations can be
modeled incorporating other length scales than continuum
models.

The experimental observations show the strong effect of free
surfaces and interfaces on the plastic deformation in small scale
metals (e.g., the effect of surface passivation in free-standing thin
films and grain boundary in polycrystalline). Free surfaces can be
sources for defects development and its propagation towards the
interior while internal interfaces enhance the resistance to plastic
flow by blocking the dislocations (e.g., Hirth, 1972; Polcarova et al.,
1998) and giving rise to strain gradients to accommodate the GNDs
(Geometrical Necessary Dislocations). Moreover grain boundaries
may also act as sources of dislocations through the transmission
of plastic slip to the adjacent grains (Shen et al., 1988; Clark
et al., 1992; Dehosson and Pestman, 1993; Pestman and Dehosson,
1992). Apart from the aforementioned physical observations, in the
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implementation of the higher-order gradient theories, and from
mathematical point of view, nonstandard boundary conditions
are required at the external boundary of a region and in this way
the governing equation is well-posed. In this regard, careful mod-
eling of the interface will supply critical information in the contin-
ued development of higher-order strain gradient plasticity
theories.

In the present paper a temperature and rate dependent grain
boundary flow rule to address the intermediate microscopic
boundary conditions is proposed, in the context of higher order
gradient plasticity theory allowing for the thermal variation. This
model accounts for the energy storage at the grain boundary (i.e.,
interface) due to the dislocation pile up caused by the presence
of surface energy as well as energy dissipation once the dislocation
transfer through the grain boundary as a result of both resistance
force and change in interfacial area. The paper is structured as fol-
lows. Section 2 presents a gradient plasticity theory for grain inte-
rior based on a system of microscopic force balances, derived from
the principle of virtual power and a thermo-mechanical version of
the second law that includes, work performed during plastic flow,
and the heat generation due to the plastic work via the energy bal-
ance relation. When combined with thermodynamically consistent
constitutive relations the microscopic force balances become non-
local flow rules in the form of partial differential equations requir-
ing boundary conditions. A rate and temperature dependent grain
boundary flow rule is also developed which accounts for the ener-
getic state of a plastically strained boundary along with boundary
resistance against the plastic strain (i.e., macroscopic measure of
slip) transfer. The elaborated details regarding the grain boundary
model are presented in Section 3. The free energy and dissipation
potentials for the grain and grain boundary are postulated based
on micro-mechanical point of views. It is further shown that the
backstress and hence kinematic hardening of the grain and grain
boundary naturally arise from the free energy potential along with
the physical justification by means of dislocation mechanisms. Sec-
tion 4 provides a physical justification regarding the proposed
grain boundary flow rule which can be taken into account in order
to make a link between the proposed grain boundary model
parameters and the nanoindentation observations conducted near
the grain boundary. In Section 5, results of the numerical calcula-
tions are presented using finite element implementation of the
proposed framework. Particularly, the size effect due to the bulk
and interfacial length scale as well as the effect of other parameters
on the mechanical and thermal responses of the materials are
extensively investigated. The proposed model is then validated
over a set of microscale experimental data on thin metal films pre-
senting size effect and initial temperature.

2. Strain gradient plasticity framework: bulk (grain interior)

In the following formulation, tensors are represented only by
lower case subscripts i, j, k and l. All other subscripts and super-
scripts do not represent tensors but only identify specific functions
or variables. However, as an example subscripts such as en, dis, int,
ex, etc. signify specific quantities respectively such as energetic, dis-
sipative, internal, external, etc.

2.1. Principle of virtual power: macroscopic and microscopic force
balances

The principle of virtual power is used to determine the associ-
ated balance of the forces that contribute to the power expended
within the body as well as the appropriate forms of the first two
laws of thermodynamics. In this regard, with accounting for the
gradient of plastic-strain rate, the structure of the internal virtual

power, Pint , is expressed in terms of the energy contribution in
the arbitrary subregion of the body, V , as shown in the expression
below (i.e., Fleck and Hutchinson, 2001; Fleck and Willis, 2009a):

Pint ¼
Z

V
ðrij _ee

ij þR _pþQk _p;kÞdV ð1Þ

where rij is the Cauchy stress tensor, ee
ij is elastic strain tensor,4 and

R and Qk are the microforces conjugate to the rate of accumulated
plastic strain ð _p ¼

ffiffiffiffiffiffiffiffiffi
_ep

ij
_ep

ij

q
Þ5 and rate of plastic strain gradient, _p;k.

The internal power is balanced by the power expended by trac-
tion ti on the external surface, S, and an external body force bi act-
ing within V to account for the inertia. External virtual power is
then expressed for any virtual velocity _ui as:

Pext ¼
Z

V
ðbi _uiÞdV þ

Z
S
ðti _ui þm _pÞdS ð2Þ

In order to account for the microscopic boundary conditions
that arise from the strain gradient, it is further assumed here that
the external power is affected by the microtraction m that is the
conjugate force of the accumulated plastic strain.

By equating the external power to the internal power (i.e.,
Pext ¼ Pint) and factoring the common terms out, the following
relation for local macroforce equilibrium and nonlocal microforce
balance can be expressed respectively for volume V:

rij;j þ bi ¼ 0 ð3Þ

sij � ðR�Qk;kÞNp
ij ¼ 0 ð4Þ

where sij ¼ rij � rkkdij=3 is the deviatoric component of the Cauchy
stress tensor (dij is the Kronecker delta). The higher-order boundary
conditions are required at the external boundary of a region in
which plastic flow occurs as well as at the internal boundary of
the plastic region. On the external surface, S, the equations for local
traction force and nonlocal microtraction condition can be given as
follows:

tj ¼ rijni ð5Þ

m ¼ Qknk ð6Þ

where nk denotes the outward unit normal to S.
The microscopic boundary conditions in Eq. (6) are related to

the interfacial energy at the free surfaces (e.g., the surface of a free-
standing thin film, the free surface of a void) or interfaces (e.g., the
film–substrate interface, grain boundaries, inclusion interface).
This interfacial energy introduces an interfacial resistance against
dislocation emission/transmission.

The simple class of boundary conditions for these fields on a
prescribed subsurface S are: (i) microfree condition where disloca-
tions are free in movement across the boundary m ¼ 0 and (ii)
microclamped condition where dislocations are completely blocked
at the boundary pI ¼ 0. According to the notion of Gurtin (e.g.,
Cermelli and Gurtin, 2002), satisfying the insulation condition im-
plies either a micro-free boundary condition imposed at external
free surfaces or a micro-clamped boundary condition imposed on
the internal boundaries. However, those null boundary conditions
of a microscopically rigid interface or a microscopically free surface
are very difficult to be satisfied in reality,6 particularly, for large

4 The classical theory of isotropic plastic solids undergoing small deformations is
based on the additive decomposition of the strain, eij , into elastic, ee

ij , and plastic parts,
ep

ij , such as: eij ¼ ee
ij þ ep

ij .
5 Depending on applied load (tension or compression), the plastic strain can

increase or decrease. However, in the current formulation, p is represented as
magnitude of the plastic strain (square root of plastic strain) and consequently it will
never decrease in case of tension followed by compression.

6 The examples of such micro-free and micro-clamped boundary conditions can be
found in thin films with unpassivated and passivated surfaces (e.g. Xiang et al., 2005).
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