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a b s t r a c t

Asymptotic analyses of the mechanical fields in front of stationary and propagating cracks facilitate the
understanding of the mechanical and physical state in front of crack tips, and they enable prediction of
crack growth and failure. Furthermore, efficient modelling of arbitrary crack growth by use of XFEM
(extended finite element method) requires accurate knowledge of the asymptotic crack tip fields. In
the present work, we perform an asymptotic analysis of the mechanical fields in the vicinity of a propa-
gating mode I crack in rubber. Plane deformation is assumed, and the material model is based on the
Langevin function, which accounts for the finite extensibility of polymer chains. The Langevin function
is approximated by a polynomial, and only the term of the highest order contributes to the asymptotic
solution. The crack is predicted to adopt a wedge-like shape, i.e. the crack faces will be straight lines.
The angle of the wedge and the order of the stress singularity depend on the hardening of the strain
energy function. The present analysis shows that in materials with a significant hardening, the inertia
term in the equations of motion becomes negligible in the asymptotic analysis. Hence, there is no upper
theoretical limit to the crack speed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the vicinity of crack tips, the stress and strain fields may
(theoretically) become singular, and the mechanical state in such
regions may be characterised by an asymptotic solution. The
nature of such singular fields reveals a great deal about the mate-
rial and the mechanical state at the crack tip, and may be used to
predict the risk of crack growth and failure. Furthermore, singular
fields and asymptotic solutions may be used in the so-called ex-
tended finite element method (XFEM) (Belytschko et al., 2009; Yazid
et al., 2009). The asymptotic crack tip deformation fields are then
added to the standard FE shape functions, which enables the pre-
diction of crack propagation along arbitrary paths using a relatively
coarse mesh.

Analytic studies of crack tip fields go back to the 1950s. The
asymptotic elastostatic crack tip fields in linearly elastic solids
(Williams, 1959), as well as solids exhibiting a non-linear material
behaviour (Hutchinson, 1968; Rice and Rosengren, 1968), have
been considered. In addition, dynamic crack propagation in linearly
elastic solids has been analysed (e.g. Sih, 1970; Clifton and Freund,
1974; Nilsson, 1974; Freund, 1990; Broberg, 1999).

With regard to rubber and soft elastic materials, Wong and
Shield (1969) employed a fully non-linear theory (i.e. for both
material and geometry) to analyse the deformation fields at a
mode I crack tip. They adopted an incompressible neoHookean
material model to analyse the deformation of a membrane under
plane stress. Using a similar framework, Knowles and Sternberg
(1973, 1974) studied the elastostatic mechanical fields in the vicin-
ity of a crack tip for a homogeneous, isotropic, hyperelastic, and
compressible material. Le and Stumpf (1993) performed a similar
study as Knowles and Sternberg, but applied a different strain
energy function for the material. Also Stephenson (1982) used a
similar type of approach as Knowles and Sternberg (1973), but con-
sidered an incompressible material and introduced the hydrostatic
pressure as an additional field variable. Knowles and Sternberg
(1983) have also studied the deformation of a crack tip in an
incompressible thin neoHookean sheet under plane stress condi-
tions. Recently, Kroon (2011a) considered dynamic crack propaga-
tion in rubber. In this study, the same material law was used as in
Knowles and Sternberg (1973, 1974), and the influence of inertia
on the crack tip fields was examined.

Mixed-mode (mode I and II) cases have also been considered
(Stephenson, 1982; Geubelle and Knauss, 1994), and it was con-
cluded that the theory for large deformations excludes the possi-
bility of a pure antisymmetric (mode II) deformation mode
(Knowles, 1981; Stephenson, 1982; Geubelle and Knauss, 1994).
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The anti-plane (mode III) crack problem has also been analysed
using finite strain theory (Knowles, 1977; Knowles and Sternberg,
1980, 1981; Silling, 1988a,b).

The elasto-static – and to some extent the dynamic – crack tip
fields in solids undergoing finite deformations have been thor-
oughly examined, as indicated above. However, the non-linear nat-
ure of the problem implies that there are no unique solutions
available. For instance, the resulting singular solutions depend on
the choice of material law. There is some experimental evidence
that crack profiles in rubber assume a parabolic shape (e.g. Gent
and Marteny, 1982; Al-Quraishi and Hoo Fatt, 2007). This outcome
is predicted for example in the studies by Knowles and Sternberg
(1973, 1974) and Kroon (2011a). However, other experimental
studies (e.g. Deegan et al., 2002; Petersan et al., 2004; Zhang
et al., 2009; Chen et al., 2011) suggest that the crack profiles would
be more or less straight, i.e. the crack would assume a wedge-like
shape. In fact, one of these studies (Zhang et al., 2009) indicates
that the shape of the crack tip may change with the crack speed
and applied boundary conditions.

In the present work, we examine the mode I crack a bit further,
and crack propagation under plane deformation conditions is con-
sidered. We adopt a material law that is suitable for rubber and is
based on Langevin statistics for the stretching of polymer chains.
However, we use the polynomial approximation of the Langevin
function, and are therefore not considering the true Langevin func-
tion, in which there is a maximum locking stretch at which the
stress/force response goes to infinity. Since the deformation of
individual polymer chains is never fully affine, complete locking
cannot be expected to occur in a real material. We therefore be-
lieve that from a physical point of view, the polynomial approxi-
mation of the Langevin function is more plausible than the exact
function itself, since the approximation in effect adds some extra
compliance at high stretches which prohibits complete locking.

In Sections 2 and 3, the eigenvalue problem is formulated,
which includes the kinematics of the problem, the constitutive
model, the boundary conditions applied, equations of motion,
and energy relations. The numerical solution to the problem is then
provided in Section 4. Finally, Section 5 provides a discussion and
some concluding remarks.

2. Problem formulation

2.1. Geometry and kinematics

In the present analysis, we consider a crack that propagates
through a plane structure, as illustrated in Fig. 1. A mode I crack
is modelled, the crack propagates with the Lagrangian crack speed
Vc, and both quasi-static and dynamic crack tip fields are consid-
ered. Three coordinate systems are introduced: a Cartesian coordi-
nate system (X0

1;X
0
2;X

0
3) that is fixed in space, a Cartesian

coordinate system (X1;X2;X3) that moves with the crack tip, and
a cylindrical coordinate system (R;H; Z) that also moves with the
crack tip. All three coordinate systems are associated with the
undeformed state of the rubber material. The two moving systems
have their origin at the tip of the crack, and the crack propagates
along the X1-direction. We assume that in the vicinity of the crack

tip, asymptotic solutions dominate the mechanical fields and stea-
dy-state conditions prevail, such that the two Cartesian systems
relate according to

X0
1 ¼ X1 þ V c � t; X0

2 ¼ X2; X0
3 ¼ X3; ð1Þ

where t denotes time. Differentiation of Eq. (1)1 yields the relation
dt ¼ �dX1=V c, which enables us to rewrite time derivatives of field
variables according to

dð�Þ
dt
¼ @ð�Þ
@X1

dX1

dt
¼ �V c

@ð�Þ
@X1

: ð2Þ

The coordinates of the moving coordinate systems relate
according to

X1 ¼ R � cos H; X2 ¼ R � sin H; X3 ¼ Z ð3Þ

and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 þ X2
2

q
; H ¼ arctan

X2

X1

� �
; ð4Þ

where X1;X2;X3; Z 2 ð�1;1Þ;R 2 ½0;1Þ, and H 2 ½�p;p�.
Henceforth, we only consider the coordinate systems that move

with the crack tip. The position vector in the undeformed configu-
ration is denoted by X ¼ X1e1 þ X2e2 þ X3e3, where e1; e2, and e3 is
a set of orthogonal unit vectors associated with the three coordi-
nates X1;X2, and X3, respectively. The position vector in the de-
formed configuration is denoted by x ¼ Xþ u, where u is the
displacement vector. The deformation gradient is defined as
F ¼ @x=@X, and the right Cauchy–Green deformation tensor is
C ¼ FTF.

For the asymptotic deformation field at the crack tip, the follow-
ing ansatz is proposed:

x1 ¼ Ra � f1ðHÞ þ x0;

x2 ¼ Rb � f2ðHÞ;
x3 ¼ x3ðZÞ:

ð5Þ

Stress fields perpendicular to the crack are expected to be singular
(0 < b < 1). Stress fields along the crack extension may also be sin-
gular but possibly with a higher exponent (a P b), associated with a
weaker singularity.

The components of the deformation gradient are computed
according to

Fij ¼
@xi

@R
@R
@Xj
þ @xi

@H
@H
@Xj
þ @xi

@Z
@Z
@Xj

; ð6Þ

where the partial derivatives are

@R
@X1
¼ cos H; @R

@X2
¼ sin H; @R

@X3
¼ 0;

@H
@X1
¼ � sin H

R ; @H
@X2
¼ cos H

R ; @H
@X3
¼ 0;

@Z
@X1
¼ 0; @Z

@X2
¼ 0; @Z

@X3
¼ 1:

ð7Þ

For the present plane problem, the deformation gradient takes on
the form

Fij ¼
F11 F12 0
F21 F22 0
0 0 F33

0
B@

1
CA: ð8Þ

The non-zero components of the deformation gradient are

F11 ¼ Ra�1 af1 cos H� f 01 sin H
� �

¼ Ra�1h11ðHÞ;
F12 ¼ Ra�1 af1 sin Hþ f 01 cos H

� �
¼ Ra�1h12ðHÞ;

F21 ¼ Rb�1 bf2 cos H� f 02 sin H
� �

¼ Rb�1h21ðHÞ;
F22 ¼ Rb�1 bf2 sin Hþ f 02 cos H

� �
¼ Rb�1h22ðHÞ;

F33 ¼ F33ðZÞ 6 1;

ð9Þ
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Fig. 1. Geometry and coordinates of crack problem in the reference configuration.
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