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The behavior of a model of single-crystal strain-gradient viscoplasticity is investigated. The model is an
extension of a rate-independent version, and includes a new hardening relation that has recently been
proposed in the small-deformation context (Gurtin and Reddy, 2014), and which accounts for slip-system
interactions due to self and latent hardening. Energetic and dissipative effects, each with its correspond-
ing length scale, are included. Numerical results are presented for a single crystal with single and multi-
ple slip systems, as well as an ensemble of grains. These results provide a clear illustration of the effects of
accounting for slip-system interactions.
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1. Introduction

The hardening behavior of a crystalline metal depends on a
number of factors such as elastic stiffness, strength, dislocation
interaction, etc., as well as on the grain size (see for example
Hall, 1951; Petch, 1953). In the context of gradient extended crys-
tal plasticity, which is motivated by the size-dependent effects that
predominate at the micron scale, theories have been proposed by
various authors. The literature on the subject has increasead signif-
icantly in the last decade and more, with representative and
important works including those by Fleck and Hutchinson
(2001), Gurtin (2000), Nix and Gao (1998) and Shu and Fleck
(1999).

Recently, within the small-deformation framework, Gurtin and
Reddy (2014) have introduced a rate-independent, thermodynam-
ically consistent, single-crystal plasticity theory which accounts for
self- and latent hardening. The behavior of the new hardening rela-
tion, and in particular its comparison with other hardening laws
that have been in use for some time, have been studied by Povall
et al. (2013) for the conventional (that is, non-gradient) theory.
These authors show via selected numerical examples that, while
the slip resistances as proposed by the different theories vary quite
considerably, the overall response of single crystals when
subjected to various loading conditions is qualitatively similar for
the different models. Other recent contributions that deal with
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self- and latent hardening include works by Bardella et al.
(2013), Bargmann et al. (2011), Conti and Ortiz (2005), Evers
et al. (2004), Klusemann et al. (2013a), Levkovitch and Svendsen
(2006), Wulfinghoff and Bohlke (2012) and Yalcinkaya et al.
(2012).

The Gurtin-Reddy model (Gurtin and Reddy, 2014) has the
advantage of simplicity: it is defined as a function of the general-
ized accumulated slips, while established models such as that
due to Peirce et al. (1982) are defined implicitly via a system of dif-
ferential equations. The purpose of this contribution is essentially
to extend the work carried out in Povall et al. (2013), by investigat-
ing computationally the behavior of the model of interactive slip
resistances, for the strain-gradient theory. This is done in a large-
deformation context, and for a viscoplastic extension of the model
presented in Gurtin and Reddy (2014).

2. Basic kinematics: Single crystal plasticity

In large-deformation plasticity, the main assumption is the
classical multiplicative split of the deformation gradient F into an
elastic F. and a plastic part Fp:

F=F.-F, (1)

The plastic part F,, is assumed to arise due to inelastic slip in the
preferred crystallographic planes. The elastic contribution F.
accounts for lattice distortion and rotation. The Green-Lagrange
strain and the right Cauchy-Green stretch tensors are defined by
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and their elastic counterparts by

C=F F ()

1 _
E. := 5[[&]‘ -Fe—1I), C.=F.-F., 3)

where I and I denote the identity tensors in the reference and inter-
mediate configurations respectively.

2.1. Glide system kinematics

As usual, the crystal plasticity model is based on the glide-sys-
tem geometry described by the glide direction s, and glide-plane
normal n,, both fixed unit vectors in the intermediate configura-
tion B;. Together with the direction p, = n, x s, transverse to s,
in the glide plane, they form an orthonormal system. It is well
known that often two or more crystallographically equivalent sys-
tems contribute to the plastic deformation.

In terms of the glide-system geometry, the evolution of the
plastic part F, of the deformation gradient is given in terms of
the glide-system geometry and slip rates v, by

Fy =Y Vs, oF, n, 4
o

Thus, the plastic flow L, = F, ~F;1 is governed by the slip rates v,.
Further, it is convenient to define a generalized slip rate T, by

Vo
FCX = )
( ld,avxva ) (5)

where [, , is a dissipative length scale associated with slip system c.
It is not directly related to microstructural length scales (Gurtin
et al.,, 2007; Voyiadjis and Deliktas, 2009). The idea of introducing
more than one internal material length scale within the context of
higher-order strain-gradient plasticity has been followed by several
authors (see e.g., Anand et al., 2005; Bardella and Giacomini, 2008;
Bargmann and Reddy, 2011; Fleck and Hutchinson, 2001; Gurtin
and Reddy, 2014; Lele and Anand, 2008; Niordson and Legarth,
2010; Reddy, 2013a).

2.2. Stress measures

Relevant stress measures are the first Piola-Kirchhoff stress
P :=det(F)o -F ', (6)
and the elastic second Piola-Kirchhoff stress S. defined by
S := det(F)F,' -6 -F,' = [F.] ' - P [Fy]', (7)

whereas the Cauchy stress tensor & is a stress measure in the cur-
rent configuration B;, the second Piola-Kirchhoff stress S, is a stress
measure in the intermediate configuration.

The resolved shear or Schmid stress 7, is defined by

Toc:soc'Me'nocv (8)

where M, = C. - S, is the Mandel stress.
2.3. Dislocation densities

During plastic deformation, two types of dislocations are pres-
ent: statistically stored dislocations (SSDs) which are accumulated
by a random trapping process and are responsible for plastic defor-
mation (Arsenlis et al., 2004); and geometrically necessary disloca-
tions (GNDs) which arise due to the locally heterogeneous plastic
shear. The first concepts of GNDs were introduced in Nye (1953)
and Ashby (1970) to account for modes of plastic deformation,
where an internal accumulation of dislocation densities is required

to accommodate the gradients of plastic strain induced by the
deformation (Needleman and Sevillano, 2003). In this regard, GNDs
are necessary to preserve lattice compatibility and represent an
additional source of dislocations in the material due to inhomoge-
neous plastic flow (Gao and Huang, 2003). In a continuum theory
there are no discrete dislocations. However, non-uniform slips
and slip gradients on the individual glide systems result in quanti-
ties that mimic the behavior of microscopic dislocations. The GNDs
are usually subdivided into edge and screw dislocations, where
edge dislocations are characterized by the fact that the Burgers
vector is perpendicular to the dislocation line direction, while for
screw dislocations the Burgers vector and one direction are
parallel.

The simplest class of models for dislocation evolution is
obtained for the case of self-interaction, in which the dislocations
on each glide system interact only with themselves.

GNDs do not contribute to the plastic deformation: rather, they
act as obstacles to the motion of the SSDs, leading to hardening in
the material. The edge and screw dislocation densities are internal
state variables defined by (Gurtin et al., 2010, Section 107.4)

o5t =~ V- [Fy 5], ©)
P =19 R, p)] (10)

where b is the magnitude of the Burgers vector. The initial condi-
tions are assumed to be p&°(X,0) = 0 resp. p5’(X,0) = 0. The dislo-
cation densities may be positive or negative.

Our definition of the GND density differs from that in Gurtin
and Reddy (2014) by the use of the length of the Burgers vector
b. This is due to the fact that in Gurtin and Reddy (2014) the theory
is based strictly on continuum mechanics in which the GND is a
quantity measured per unit length. In this work, we follow the
approach generally used in material science where the GND repre-
sents a quantity measured in dislocations per unit area.

3. The mathematical model
3.1. Force balances

The macroscopic force balance equation is
0 =DivP +f, (11)

where f(x,t) : By x R, — RY™ is the body force. Here and hence-
forth Div refers to the divergence with respect to the reference con-
figuration, i.e., Div{e} = Vx - {e}

On the microlevel, we follow the approach in Gurtin (2000,
2008) and introduce the microforce balance equation '

0 =Divéy, + T4 — Ty, (12)

where 7, is the scalar internal microforce and &, is the referential
vector-valued microstress power-conjugate to the slip rate gradient
VxV,. The microforce balance (12) has to hold for every slip system
o. The microstress &, is split into an elastic and a dissipative con-
tribution (see e.g., Gurtin and Anand, 2005):

"
o =& + & (13)
whereas the internal microforce 7, is purely dissipative in nature.

! The existence of the microforce balance (12) is a consequence of the principle of
virtual power; cf. Gurtin (2000) for a detailed derivation.
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