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a b s t r a c t

The following article proposes a damage model that is implemented into a glassy, amorphous thermo-
plastic thermomechanical inelastic internal state variable framework. Internal state variable evolution
equations are defined through thermodynamics, kinematics, and kinetics for isotropic damage arising
from two different inclusion types: pores and particles. The damage arising from the particles and crazing
is accounted for by three processes of damage: nucleation, growth, and coalescence. Nucleation is defined
as the number density of voids/crazes with an associated internal state variable rate equation and is a
function of stress state, molecular weight, fracture toughness, particle size, particle volume fraction, tem-
perature, and strain rate. The damage growth is based upon a single void growing as an internal state var-
iable rate equation that is a function of stress state, rate sensitivity, and strain rate. The coalescence
internal state variable rate equation is an interactive term between voids and crazes and is a function
of the nearest neighbor distance of voids/crazes and size of voids/crazes, temperature, and strain rate.
The damage arising from the pre-existing voids employs the Cocks–Ashby void growth rule. The total
damage progression is a summation of the damage volume fraction arising from particles and pores
and subsequent crazing. The modeling results compare well to experimental findings garnered from
the literature. Finally, this formulation can be readily implemented into a finite element analysis.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Continuum damage modeling used in finite element analysis of
polymers is a quickly expanding area of interest as polymers are
being viewed as a competitor to some metals for lightweighting
designs. As such, the demand for more accurate material models
is warranted (see Bouvard et al., 2009). For a review of the multi-
scale aspects of amorphous polymers, please see Boyce and
Arruda (2000) for rubber constitutive modeling or Horstemeyer
and Bammann (2010) for internal state variable theory for
inelasticity). Part of the demand for more accurate modeling
requires including appropriate damage progression effects.

However, the bulk of modeling damage in polymers employs
the classic work by Gurson (1977). Lazzeri and Bucknall (1993,
1995) proposed and applied a modified Gurson model to rubber-
toughened polymers to account for dilatational yielding. Jeong

and Pan (1995) generalized Gurson’s yield criterion to take into
account pressure sensitivity, which reduced to Coulomb’s yield cri-
terion when the void volume fraction was zero. Later, Jeong (2002)
implemented the same model into a finite element (FE) code and
also added tensile hydrostatic pressure effects. To account for rup-
ture due to vapor pressure in polymer electronic packages compo-
nents, Guo and Cheng (2002) implemented the modified Gurson–
Tvergaard model (Tvergaard, 1989), which calls a microscopic
stress tensor and the void volume fraction as internal variables,
into an FE code. Damage in rubber-modified epoxies was modeled
by both Kody and Lesser (1999) and Imanaka et al. (2003) with
Gurson constitutive equations. Because the Gurson formulation
was originally applied to metals which fracture at small strains
compared to ductile polymers, the yield stress is overestimated.
Therefore, Pijnenburg and der Giessen (2001) modified it to
account elasticity effects and shear banding. This same issue of
large strains is also dealt with in Steenbrink et al. (1997) and
Steenbrink and van der Giessen (1997). Recently, Zaïri et al.
(2008) extended the Bodner–Partom model (Bodner and Partom,
1975) with a modified Gurson model (Tvergaard, 1981) in a thor-
ough experimental/computational approach. Challier et al. (2006)
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studied polyvinylidene fluoride (PVDF) fracture mechanisms and
then used the mechanical testing and microscopic observations
to fit the Gurson–Tvergaard–Needleman (GTN) model (Tvergaard,
1982; Tvergaard and Needleman, 1984) in an FE analysis.
Laiarinandrasana et al. (2009) studied PVDF as well but at lower
temperatures, which drastically altered the mechanical response,
yet they fit the GTN model to correspond to the material proper-
ties’ temperature dependence following Khan et al. (2006). The
GTN model was also compared to Bridgman tests to capture triax-
iality effects in polyamide by Boisot et al. (2011).

Other failure criteria, apart from Gurson, have been developed
as well for polymers. Gearing and Anand (2004a) employed two
parameters into an FE analysis to distinguish between brittle and
ductile failure, where once a critical strain was reached in an ele-
ment, it was removed. To model crazing and molecular chain-scis-
sion related failure, a similar failure criterion was used by Gearing
and Anand (2004b) where craze breakdown or molecular chain-
scission occurred when a critical strain value was reached.

The following work proposes a damage framework that includes
three mechanisms: damage from pores, damage from particles, and
crazing. Crazing in this context is the organized fibrillar microstruc-
ture with lines of voids perpendicular to the principle tensile stress
resulting from weak imperfections in the molecular composition.
The damage from particles and crazes will be defined by separate
void nucleation, growth, and coalescence rate equations that are
included in a modified inelastic amorphous glassy thermoplastic
internal state variable (ISV) model (Bouvard et al., 2013). The orga-
nizational structure of this study is as follows: First, the kinematics
will be prescribed beginning with a multiplicative decomposition of
the deformation gradient. Next, the thermodynamic restrictions as
given by Coleman and Gurtin (1967) are followed to where a tem-
perature evolution is found. Finally, the kinetics and constitutive
model is proposed. Within the section, the damage evolution equa-
tions are given, and a void nucleation evolution model is developed.
The notion is that this ISV model would be able to be employed
within a finite element code.

1.1. Notation

Standard notation will be followed in this formulation. Tensors
are denoted by boldface font while scalar values will have the stan-
dard weight. For example, the scalar product, C, of tensors A and B
appears as A : B ¼ C. Special care is given to specify configurations
throughout the derivation by using accent marks where the tilde
(~B), circumflex (B̂), and macron (�B) represent different intermediate
configurations. The following definitions are used in the text:
AB) ðA � BÞij ¼ AikBkj;a� b) ða� bÞij ¼ aibj; A : B ¼ AijBij, and

Ak k ¼ ðAijAijÞ1=2.

2. Kinematics

For a continuous three dimensional body in its initial state, any
arbitrary point X can be mapped smoothly to a corresponding
point, x, in the current configuration using the deformation gradi-
ent tensor F along with a mapping function, x ¼ v X; tð Þ, where

F X; tð Þ ¼ @v X; tð Þ
@X

ð1Þ

Both points X and x are located in the same coordinate system
(X1;X2;X3), where X is the location of the point when time ¼ 0
and x in the location of the point when time ¼ t. The extended mul-
tiplicative decomposition of the deformation gradient tensor (Bilby
et al., 1955; Kröner, 1958; Bammann et al., 1996) will take the fol-
lowing form:

F ¼ FeF tFdFp ð2Þ

In Eq. (2), each individual deformation gradient represents a
physical deformation phenomenon. The elastic deformation gradi-
ent tensor, Fe, represents chain rotations and bond stretching that
are reversible. The isotropic thermal deformation gradient tensor,
Ft, represents deformation due to thermal expansion. The damage
deformation gradient tensor, Fd, or volumetric inelastic deforma-
tion gradient, represents volumetric deformation due to increasing
void volume. The plastic deformation gradient tensor, Fp, repre-
sents isochoric irreversible deformation.

There is no consensus on the placement of the thermal defor-
mation gradient tensor, Ft; however, it is usually found either fol-
lowing the elastic deformation gradient (Weber and Boyce, 1989;
Boyce et al., 1992; Arruda et al., 1995) or following the plastic
deformation gradient (Bammann and Solanki, 2010; Bouvard
et al., 2010). A physical basis for the latter can be made by consid-
ering a uniaxial tension test at room temperature interrupted prior
to failure. The internal temperatures of thermoplastics generally
rise during deformation. After unloading, the specimen is allowed
to return to room temperature. The elastic deformation and the
isotropic thermal expansion, is assumed to be negligible and the
volumetric and deviatoric plastic deformation remains. Decompos-
ing the total deformation gradient tensor into four separate defor-
mation gradient tensors creates three intermediate configurations
between the reference configuration, B0, and the current configura-
tion, B. The first intermediate configuration, ~B, is defined by Fp. The
second intermediate configuration, B̂, is defined by FdFp. The third
intermediate configuration, �B, is defined by FH where

FH ¼ F tFdFp; F ¼ FeFH ð3Þ

The model is primarily expressed in the intermediate configura-
tion of �B following Weber and Boyce (1989). The order of the defor-
mation gradient tensors and configurations are visualized in Fig. 1.

The Jacobian of the deformation gradient tensor is the ratio of
volume change for the previous configuration to the following con-
figuration. For the damage deformation gradient, the Jacobian
takes the following form:

Jd ¼ det Fd ¼
bVeV ð4Þ

Because of void nucleation, growth, and coalescence, the rela-
tionship between the volumes at ~B and B̂ are given bybV ¼ VV þ eV ð5Þ

where VV is the volume of voids. Damage, /, is defined as the ratio
of the void volume to the total volume in B̂.

/ ¼ VVbV ð6Þ

Given Eqs. (4)–(6), assuming isotropic damage, the damage defor-
mation gradient can thus be written in terms of / as

Jd ¼
1

1� /
; Fd ¼

1

1� /ð Þ1=3 1 ð7Þ

where 1 is a second rank identity tensor. The total Jacobian, which
accounts for total volumetric change becomes

B0

B̃
B̂

B̄

B

Fp
F

Fd Ft

Fe

F

Fig. 1. Decomposition of the deformation gradient F into four components:
deviatoric plastic Fp, volumetric plastic (damage) Fd, thermal F t , and elastic Fe.
FH represents the plastic-damage-thermal deformation gradient.
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