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a b s t r a c t

Our shakedown reduced kinematic formulation is developed to solve some typical plane stress problems,
using finite element method. Whenever the comparisons are available, our results agree with the
available ones in the literature. The advantage of our approach is its simplicity, computational effective-
ness, and the separation of collapse modes for possible different treatments. Second-order cone program-
ming developed for kinematic plastic limit analysis is effectively implemented to study the incremental
plasticity collapse mode. The approach is ready to be used to solve general shakedown problems, includ-
ing those for elastic–plastic kinematic hardening materials and under dynamic loading.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Shakedown analysis determines the load limits on the loading
cycles, under which a structure should be safe (i.e. it would behave
elastically after some possible initial limited plastic dissipation),
while over the limits the structure would collapse incrementally
or fail by alternating plasticity (Melan, 1938; Koiter, 1963;
Gokhfeld, 1966; Debordes, 1977; König, 1987; Bree, 1989; Pham
and Stumpf, 1994; Pham, 2000b, 2003b, 2008, 2013). Melan’s static
and Koiter’s kinematic shakedown theorems are generalizations of
the respective plastic limit ones (Gvozdev, 1960; Drucker et al.,
1951; Hill, 1951), from the instantaneous collapse considerations
to those over loading processes. Original shakedown theorems
are restricted to quasi-static loading processes, however latter
have been extended for the larger class of dynamic problems
(Gavarini, 1969; Ho, 1972; Corradi and Maier, 1974; Ceradini,
1980; Pham, 1992, 2000a, 2003a, 2010; Corigliano et al., 1995).
Preliminarily restricted to elastic-perfectly plastic bodies, the
shakedown theorems have been developed for more general
kinematic hardening materials (Maier, 1972; Ponter, 1975; König,

1987; Weichert and Gross-Weege, 1988; Polizzotto et al., 1991;
Stein and Huang, 1994; Fuschi, 1999; Pham and Weichert, 2001;
Weichert and Maier, 2002; Bousshine et al., 2003; Pham, 2007,
2008, 2013; Simon, 2013; . . .).

Implementing the shakedown theorems in applications, one
faces the difficulty of solving nonlinear optimization problems
for structures with complex geometries and under complicated
loading programs (Belytschko, 1972; Corradi and Zavelani, 1974;
Zouain et al., 2002; Magoariec et al., 2004; Vu et al., 2004a; Liu
et al., 2005; Garcea et al., 2005; Chen et al., 2008; Tran et al.,
2010). Various iterative optimization algorithms have been devel-
oped to provide solution of such the non-linear programming
(Zouain et al., 2002; Vu et al., 2004b; Garcea et al., 2005; Li and
Yu, 2006). However, these methods can tackle problems with a
moderate number of variables, and hence it is still desirable to
develop an alternative solution procedure that can solve large-
scale shakedown analysis problems in engineering practices.
Shakedown analysis is a generation of limit analysis, and hence
optimization algorithms initially developed for the latter can usu-
ally be extended to former in a relatively straightforward manner.
In the context of limit analysis, a primal–dual interior-point
method proposed in Andersen et al. (2001, 2003)) has been proved
to be one of the most robust and efficient algorithms in treating
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such the large-scale non-linear optimization problem (Ciria et al.,
2008; Munoz et al., 2009; Le et al., 2009, 2010, 2012). The
algorithm has been extended to both static and kinematic shake-
down analysis problems (Le et al., 2010; Bisbos et al., 2005;
Makrodimopoulos, 2006; Weichert and Simon, 2012).

From the original Koiter’s shakedown kinematic theorem,
reduced shakedown kinematic formulations have been deduced
with separated collapse modes and applied to various simple typ-
ical structures (of plastic limit analysis), yielding certain interest-
ing semi-analytical results (Pham, 1992, 2000a,b, 2003a,b, 2008,
2010, 2013; Pham and Stumpf, 1994;. . .). The purpose of this
research is to develop this approach with numerical finite element
implementation for more complex engineering structures. The pri-
mal–dual interior-point algorithm will be developed with the
reduced shakedown kinematic formulation, making the use of
the optimization method in direct manner. It is worth noting that
with the use of the reduced kinematic formulation the number of
kinematic variables in the resulting optimization is kept to a
minimum. This is because there is no need to approximate
displacement fields at every vertex of a polyhedral load domain
as required in the original kinematic formulation. Furthermore,
the reduced kinematic formulation is able to produce indepen-
dently the incremental and alternative modes, leading to possible
different treatments of the modes in analysis of structures.

The layout of the paper is as follows. The next section recalls
kinematic formulations including both unified and reduced kine-
matic shakedown ones. In Section 3, the kinematic formulation is
discretized using finite element method, and an optimization strat-
egy based on second-order cone programming is described.
Numerical examples are provided in Section 4 to illustrate the per-
formance of the proposed solution strategy, and non-shakedown
modes for various loading domains are also shown. The conclusion
completes the paper.

2. Shakedown kinematic formulations

Letreðx; tÞdenote the fictitious elastic stress response of the body
V to external agencies over a period of time ðx 2 V ; t 2 ½0; T�Þ under
the assumption of perfectly elastic behavior, called a loading process
(history). The actions of all kinds of external agencies upon V can be
expressed explicitly through re. At every point x 2 V , the elastic
stress response reðx; tÞ is confined to a bounded time-independent
domain with prescribed limits in the stress space, called a local load-
ing domainLx. As a field over V ;reðx; tÞbelongs to the time-indepen-
dent global loading domain L:

L ¼ frejreðx; tÞ 2 Lx; x 2 V ; t 2 ½0; T�g: ð1Þ

In the spirit of classical shakedown analysis, the bounded load-
ing domain L, instead of a particular loading history reðx; tÞ, is
given a priori. Shakedown of a body in L means it shakes down
for all possible loading histories reðx; tÞ 2 L .
A signifies the set of compatible-end-cycle (deviatoric) plastic

strain rate fields ep over time cycles 0 6 t 6 T:

A ¼ epjep ¼
Z T

0
epdt 2 C

� �
; ð2Þ

where C is the set of strain fields that are both deviatoric and com-
patible on V. Let ks be the shakedown safety factor: at ks > 1 the
structure will shake down, while it will not at ks < 1, and ks ¼ 1
defines the boundary of the shakedown domain. Koiter’s shake-
down kinematic theorem can be stated as (Koiter, 1963; Pham,
2003a):

k�1
s ¼ sup

ep2A;re2L

R T
0 dt

R
V re : epdVR T

0 dt
R

V DðepÞdV
; ð3Þ

where DðepÞ ¼ r : ep is the dissipation function determined by the
yield stress rY and the respective yield criterion; e.g. for a Mises
material we have

DðepÞ ¼
ffiffiffiffiffiffiffiffi
2=3

p
rY ðep : epÞ1=2

: ð4Þ

Alternatively, (3) can also be presented as

ks ¼ inf
ep2A;re2L

R T
0 dt

R
V DðepÞdVR T

0 dt
R

V re : epdV
; ð5Þ

but with the implicit condition that
R T

0 dt
R

V re : epdV > 0 (otherwise
the expression infð�Þ should be trivial �1, which is physically
meaningless).

With the use of mathematical programming theory, the upper
bound shakedown theorem can be re-expressed in the form of an
optimization problem as follows

kþs ¼min
Z T

0
dt
Z

V
Dðep

ijÞdV

s:t

R T
0 dt

R
V re

ije
p
ijdV ¼ 1

Dep
ij ¼

R T
0 ep

ijdt ¼ 1
2 ðDui;j þ Duj;iÞ on V ;

Dui ¼
R T

0
_uidt on V ;

Dui ¼ 0 on @Vu;

8>>>>><
>>>>>:

ð6Þ

where kþs is the upper bound on the actual shakedown load multi-
plier, Dep

ij is the admissible cycle of plastic strain fields correspond-
ing to a cycle of displacement fields Dui, and the constrained
boundary @Vu is fixed. Note that at each instant during the time
cycle t, the plastic strain rates ep

ij may be not compatible, but the
plastic strain accumulated over the cycle Deij must be compatible.

In order to perform numerical shakedown analysis of struc-
tures, the time integration in problem (6) must be removed
because the evaluation of plastic strains over a loading cycle would
be difficult. Based on the two convex-cycle theorems presented in
König (1987), the problem (6) can be expressed as

kþs ¼min
XM

k¼1

Z
V

Dðep
kÞdV

s:t

PM
k¼1

R
V re

k : ep
kdV ¼ 1

Dep ¼
XM

k¼1

ep
k on V ;

Du ¼ 0 on @Vu;

8>>>><
>>>>:

ð7Þ

where M ¼ 2N is the number of vertices of the convex polyhedral
load domain L; N is the number of variable loads.

The so-called unified optimization problem (7) can provide a
shakedown load multiplier that is the smaller one of incremental
plasticity limit (ratchetting or progressive deformation limit) and
alternating plasticity limit (low-cycle fatigue or plastic shakedown
limit), and it has been solved numerically using various discretiza-
tion method and optimization algorithms.

From Koiter’s shakedown kinematic theorem (3), Pham (1992)
and Pham and Stumpf (1994) have deduced the much simpler
reduced shakedown kinematic formulation

k�1
s P k�1

sr ¼max fI;Ag; ð8Þ

where

I ¼ sup
re2L;ep2C

R
V maxtx ½reðx; txÞ : epðxÞ�dVR

V DðepÞdV
; ð9Þ

A ¼ sup
x2V ;re2L;êp ;t1 ;t2

½reðx; t1Þ � reðx; t2Þ� : êpðxÞ
2DðêpÞ ð10Þ
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