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a b s t r a c t

Lattice models with long-range interactions of power-law type are suggested as a new type of micro-
scopic model for fractional non-local elasticity. Using the transform operation, we map the lattice equa-
tions into continuum equation with Riesz derivatives of non-integer orders. The continuum equations
that are obtained from the lattice model describe fractional generalization of non-local elasticity models.
Particular solutions and correspondent asymptotic of the fractional differential equations for displace-
ment fields are suggested for the static case.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Lattice with long-range interaction is a subject of investigations
in different areas of mechanics and physics (see for example
Kröner, 1967; Eringen and Kim, 1977; Ostoja-Starzewski, 2002;
Luo and Afraimovich, 2010; Tarasov, 2011; Dyson, 1971; Frohlich
et al., 1978; Nakano and Takahashi, 1995; Campa et al., 2009).
The long-range interactions have been studied in discrete systems
as well as in their continuous analogs. As it was shown in Tarasov
(2006b,a) (see also Tarasov and Zaslavsky, 2006; Tarasov, 2011),
the continuum equations with derivatives of non-integer orders
can be directly connected to lattice models with long-range inter-
actions of power law type.

The theory of derivatives and integrals of non-integer orders
(Samko et al., 1993; Kilbas et al., 2006) allow us to investigate the
behavior of materials and media that are characterized by non-
locality of power-law type. Fractional calculus has a wide applica-
tion in mechanics and physics (for example see Carpinteri and
Mainardi, 1997; Hilfer, 2000; Sabatier et al., 2007; Mainardi,
2010; Luo and Afraimovich, 2010; Tarasov, 2011, 2013a; Klafter
et al., 2011). The fractional calculus allows us to formulate a frac-
tional generalization of non-local elasticity models in two forms:
the fractional gradient elasticity models (weak power-law non-
locality) and the fractional integral non-local models (strong
power-law non-locality). Fractional models of non-local elasticity
and some microscopic models are considered in different articles

(see for example Lazopoulos, 2006; Cottone et al., 2009;
Carpinteri et al., 2009a,b, 2011; Di Paola and Zingales, 2008, 2009,
2011; Di Paola et al., 2010, 2014; Tarasov, 2014, 2013, 2014a). Elas-
tic waves in nonlocal continua modeled by a fractional calculus
approach are considered in Cottone et al. (2009), Atanackovic and
Stankovic (2009), Zingales (2011), Sapora et al. (2013) and
Challamel et al. (2013). In Tarasov (2014) and Tarasov (2013) a gen-
eral approach to describe lattice model with power-law spatial dis-
persion for fractional elasticity has been proposed. This approach
can be used for different type of interaction of lattice particles.
Therefore explicit forms of the long-range interactions are not
considered in Tarasov (2014, 2013). In Tarasov (2014a) a model of
lattice with long-range interaction of Grünwald–Letnikov–Riesz
type has been suggested to describe fractional gradient and integral
elasticity of continuum. In this paper we focus on the lattice models
with long-range interaction of power-law type as new type of
microscopic models for fractional generalization of elasticity
theory. We suggest lattice models with power-law long-range
interaction as microscopic model of fractional non-local contin-
uum. The equations for displacement field are directly derived from
the suggested lattice models by the methods of Tarasov (2006b,a).
The suggested generalization of the elasticity equations contains
the fractional Laplacian in the Riesz’s form (Kilbas et al., 2006).
We demonstrate a connection between the dynamics of lattice sys-
tem of particles with long-range interactions and the fractional
continuum equations by using the transform operation suggested
in Tarasov (2006b,a). We show how the continuous limit for the
lattice with long-range interactions of power-law type gives the
continuum equation of the fractional elasticity. We get particular

http://dx.doi.org/10.1016/j.ijsolstr.2014.04.014
0020-7683/� 2014 Elsevier Ltd. All rights reserved.

⇑ Tel.: +7 495 939 03 97.
E-mail address: tarasov@theory.sinp.msu.ru

International Journal of Solids and Structures 51 (2014) 2900–2907

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.04.014&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.04.014
mailto:tarasov@theory.sinp.msu.ru
http://dx.doi.org/10.1016/j.ijsolstr.2014.04.014
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


solutions of the fractional differential elasticity equations for some
special cases.

2. Equations of lattice model

As a microscopic model, we use unbounded homogeneous lat-
tices, such that all particles are displaced from its equilibrium posi-
tions in one direction, and the displacement of particle is described
by a scalar field. We consider one-dimensional lattice system of
interacting particles. The equations of motion for particles are

M
d2unðtÞ

dt2 ¼ g2

Xþ1
m¼�1
m – n

K2ðn;mÞ un � umð Þ

þ ga

Xþ1
m¼�1
m – n

Kaðn;mÞ un � umð Þ þ FðnÞ; ð1Þ

where unðtÞ are displacements from the equilibrium, g2 and ga are
the coupling constants of particle interactions, and the terms FðnÞ
characterize an interaction of the particles with the external on-site
force. For simplicity, we assume that all particles have the same
mass M. The function K2ðn;mÞ describes the nearest-neighbor inter-
action with coupling constant g2 ¼ K , which is the spring stiffness.
The function Kaðn;mÞ describes the long-range interaction with a
coupling constant ga. For a simple case each particle can be consid-
ered an inversion center and

Kaðn;mÞ ¼ Kaðjn�mjÞ:

Equations of motion (1) have the invariance with respect to its dis-
placement of lattice as a whole in case of absence of external forces.
It should be noted that the non-invariant terms lead to the diver-
gences in the continuous limit (Tarasov, 2011).

Using the approach suggested in Tarasov (2006a,b, 2011), we
can consider a set operations that transforms the lattice equations
for unðtÞ into continuum equation for displacement field uðx; tÞ. We
assume that unðtÞ are Fourier coefficients of the field ûðk; tÞ on
½�k0=2; k0=2� that is described by the equations

unðtÞ ¼
1
k0

Z þk0=2

�k0=2
dk ûðk; tÞ eikxn ¼ F�1

D fûðk; tÞg; ð2Þ

ûðk; tÞ ¼
Xþ1

n¼�1
unðtÞ e�ikxn ¼ FDfunðtÞg; ð3Þ

where xn ¼ nd and d ¼ 2p=k0 is distance between equilibrium
positions of the lattice particles. Eqs. (3) and (2) are the basis for
the Fourier series transform FD and the inverse Fourier series
transform F�1

D .
The Fourier transform can be derived from (3) and (2) in the

limit as d! 0 (k0 !1). In this limit the sum is transformed into
an integral, and Eqs. (2) and (3) become

~uðk; tÞ ¼
Z þ1

�1
dx e�ikxuðx; tÞ ¼ Ffuðx; tÞg; ð4Þ

uðx; tÞ ¼ 1
2p

Z þ1

�1
dk eikx~uðk; tÞ ¼ F�1f~uðk; tÞg: ð5Þ

Here we use the lattice function

unðtÞ ¼
2p
k0

uðxn; tÞ

with continuous function uðx; tÞ, where xn ¼ nd ¼ ð2pnÞ=k0 ! x. We
assume that ~uðk; tÞ ¼ Lûðk; tÞ, where L denotes the passage to the

limit d! 0 (k0 !1), i.e. the function ~uðk; tÞ can be derived from
ûðk; tÞ in the limit d! 0. Note that ~uðk; tÞ is a Fourier transform of
the field uðx; tÞ. The function ûðk; tÞ is a Fourier series transform of
unðtÞ, where we can use unðtÞ ¼ ð2p=k0Þuðnd; tÞ.

We can state that a lattice model transforms into continuum
model by the combination F�1L FD of the following operation
(Tarasov, 2006a,b):

The Fourier series transform:

FD : unðtÞ ! FDfunðtÞg ¼ ûðk; tÞ: ð6Þ

The passage to the limit d! 0:

L ¼ lim
d!0

: ûðk; tÞ ! Lfûðk; tÞg ¼ ~uðk; tÞ: ð7Þ

The inverse Fourier transform:

F�1 : ~uðk; tÞ ! F�1f~uðk; tÞg ¼ uðx; tÞ: ð8Þ

These operations allow us to get continuum equations from the lat-
tice equations (Tarasov, 2006a,b, 2011).

3. Lattice with nearest-neighbor interaction

Let us consider the lattice with nearest-neighbor interaction
that is described by (1), where Kaðn�mÞ ¼ 0, and

Xþ1
m¼�1
m – n

K2ðn;mÞ umðtÞ ¼ unþ1ðtÞ � 2unðtÞ þ un�1ðtÞ; ð9Þ

where the term K2ðn;mÞ describes the nearest-neighbor interaction.
Let us derive the usual elastic equation from the lattice model with
the nearest-neighbor interaction with coupling constant g2 ¼ K,
which is the spring stiffness. The following statement (Tarasov,
2006a,b, 2011) gives for this lattice model with the nearest-neigh-
bor interaction the corresponding continuum equation in the limit
d! 0.

Proposition 1. In the continuous limit (d! 0) the lattice equations
of motion

M
d2unðtÞ

dt2 ¼ K � unþ1ðtÞ � 2unðtÞ þ un�1ðtÞð Þ þ FðnÞ ð10Þ

are transformed by the combination F�1L FD of the operations (6)–(8)
into the continuum equation:

@2uðx; tÞ
@t2 ¼ C2

e Duðx; tÞ þ 1
q

f ðxÞ; ð11Þ

where

q ¼ M
Ad

; C2
e ¼

E
q
¼ K d2

M
; E ¼ K d

A
ð12Þ

and C2
e is a finite parameter, A is the cross-section area of the medium,

E is the Youngs modulus, and f ðxÞ ¼ FðxÞ=ðAdÞ is the force density.

A detailed proof of Proposition 1 is given in Appendix A.
As a result, we prove that lattice Eq. (10) in the limit d! 0 give

the continuum equation with the Laplacian (see also Tarasov,
2014b). Note that this result can be derived by methods described
in Section 8 of Maslov (1976), where the relation

exp i �id
@

@x

� �
uðx; tÞ ¼ uðxþ d; tÞ

and the representation of (10) by pseudo-differential equation are
used.
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