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a b s t r a c t

At small length scales, the adhesion and surface effect are of great significance, both of which play impor-
tant roles in the contact between two elastic solids. In this study, the classical Johnson–Kendall–Roberts
(JKR) adhesive contact theory is generalized to the nanoscale at which the surface effect is considered.
The influence of the surface stress on the JKR adhesive contact is investigated by employing the non-
classical Boussinesq fundamental solutions. It is found that, compared with the classical theory, the
pull-off force increases while the critical contact radius decreases as a result of the surface effect.
Numerical results show that a relative error of 10% can be introduced in the pull-off force when the
indenter radius is less than 20 nm. A detailed theoretical analysis of this interesting phenomenon is
presented based on dimensional analysis, and two scaling laws for the adhesive contact at the nanoscale
are constructed. These two new scaling laws reveal that the pull-off force is relevant to the elastic prop-
erties of the bulk materials, which is different from the classical adhesive contact theory. The present
work is promising for the engineering applications in micro-electro-mechanical systems (MEMS) and
nano-intelligent devices.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Tremendous progresses have been made in nanotechnology in
recent decade because of its promising applications in micro-elec-
tro-mechanical systems (MEMS) and nano-intelligent devices. For
nano-structured materials, a growing body of research shows that
several important physical properties, such as the elastic modulus
(Chen et al., 2006; Jing et al., 2006), yield strength (Zhang et al.,
2010), indentation hardness (Ma and Clarke, 1995; Feng and Nix,
2004) and melting temperature (Sun et al., 2002), become size-
dependent; thus, determining how to interpret these interesting
phenomena is being a hot point in solid mechanics and material
science. At the nanoscale, the influence of the surface energy is
of great importance because the surface to volume ratio is
remarkably large for nanostructures, and quite a number of the
size-dependent physical properties of nanosized materials can be
rationalized by invoking the concept of surface energy.

Many researchers have studied the mechanical behaviors of the
nano-structured materials by employing the surface stress theory
(Gurtin and Murdoch, 1975, 1978; Povstenko, 1993; Cammarata,
1994; Huang and Wang, 2006; Huang and Sun, 2007). Miller and
Shenoy (2000) studied the size-dependent elastic properties of
nanosized structural elements and constructed a simple model to

predict the size dependence of the effective properties. Sharma
and Ganti (2004) and Duan et al. (2005a) studied the eigenstrain
problem of spherical inhomogeneities with the interface effect
and concluded that the Eshelby tensor is size-dependent. Dingre-
ville et al. (2005) constructed a framework to incorporate the sur-
face free energy and derived the effective moduli of the nanosized
structural elements. Duan et al. (2005b) studied the effective elas-
tic constants of composites that contained spherical nano-inhomo-
geneities with interface stress but they only considered the effect
of the interface elasticity. Later, Huang and Sun (2007) established
a micromechanical scheme to predict the effective modulus of
nanocomposites, in which both the effect of the residual interface
stress and the interface elasticity can be taken into account. It was
shown that Duan et al. (2005b)’s result is just a special case of
Huang and Sun (2007). Park and Klein (2008) investigated the sur-
face stress effect on the resonant properties of nanowires and
emphasized the importance of the residual surface stress. Dingre-
ville and Qu (2008) derived a new relation between the interfacial
excess energy and the interfacial excess stress for planar interfaces,
which can account for both the in-plane and transverse deforma-
tions of the real material interfaces. Recently, several new direc-
tions in the surface effect have been explored. For example, the
mechanics of rough surfaces and its applications were studied
(Weissmuller and Duan, 2008; Mohammadi et al., 2013); the cur-
vature dependence of the surface energy was considered to inves-
tigate its significance on nanostrucutres (Chhapadia et al., 2011;
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Mohammadi and Sharma, 2012); the surface effects were found to
strongly influence the electromechanical coupling behaviors of
nano-materials (Dai et al., 2011; Dai and Park, 2013).

There has been some preliminary research in contact mechanics
at the nanoscale. Wang and Feng (2007) studied the two dimen-
sional half-space problems with the effect of the residual surface
stress. Long et al. (2012) studied the effect of the residual surface
stress on the two dimensional Hertzian contact problem, and later
Long and Wang (2013) generalized their work to the three dimen-
sional case. Zhao and Rajapakse (2009) studied the influence of the
surface elasticity on the surface-loaded isotropic elastic layers. It
has been demonstrated that the residual surface stress and the
surface elasticity are two equally important aspects in the surface
effect, but only one of these effects is considered in the above-
mentioned works. Gao et al. (2013) established a non-classical
formulation of the Boussinesq problem, in which both the residual
surface stress and the surface elasticity were considered, and
constructed a three dimensional Hertizian contact model with the
surface effect. However, the contact models reviewed above are
only concerned with the Hertzian contact model. In fact, the Van
der Waals interaction between the ideal surfaces of two solids will
result in the adhesion between elastic bodies. Thus, the adhesion
effect is truly a surface/interface phenomenon. When it comes to
the elastic contact problems at the nano- or microscale, the adhe-
sion should be an indispensable factor (Zhao et al., 2003).

The pioneering work in the adhesive contact can be traced back
to Bradley (1932), who first solved the adhesive contact between a
rigid sphere and a rigid plane and gave the formula of the pull-off
force. The theory of the adhesive contact between two elastic
bodies was first established by Johnson et al. (1971) in their epon-
ymous Johnson–Kendall–Roberts (JKR) theory, which is based on
the balance between the elastic energies and the work of adhesion.
The JKR theory predicted a compressive stress field near the central
region of contact and a singular tensile stress field near the contact
edges. On the other hand, Derjaguin et al. (1975) developed an
alternative adhesive contact theory (Derjaguin–Muller–Toporov
theory or DMT theory), in which the stress field keeps in the Hertz
profile within the contact region while the intermolecular adhe-
sion outside the contact region is considered. Later, it was pointed
out by Tabor (1977) that the JKR model is more suitable for the
contact between relatively large and soft bodies while the DMT
theory is more suitable for the contact between small and rigid
bodies. Maugis (1992) developed a more general theory describing
the transition between the JKR and DMT theories by using the
Dugdale model. There has been extensive research that is based
on these profound and significant adhesive contact theories. For
example, a generalized adhesive contact model that considered
the influence of shot-range and long-range attractive forces both
inside and outside the actual contact area was developed (Schwarz,
2003); the classical JKR theory was extended to anisotropic mate-
rials and a model of reversible adhesion was developed (Chen and
Gao, 2007); the adhesive behavior of the power-law graded mate-
rials was studied (Chen et al., 2009a,b); the adhesion of the nano-
scale asperities with power-law profiles was investigated (Zheng
and Yu, 2007; Grierson et al., 2013). It should be noted that there
are substantial significant results on the adhesive contact in the lit-
erature, but regretfully, we can only review a small part of them
here. The reader may refer to Barthel (2008) for a review of the
adhesive interactions in contact mechanics. At the small length
scales, both the adhesion and the surface stress play important
roles in MEMS and nano-intelligent devices. However, to the
authors’ knowledge, the effect of surface stress on the adhesive
contact between elastic bodies at the nanoscale has not been
studied.

The objective of the present paper is to generalize the classical
JKR adhesive contact model to the nanoscale by considering the sur-

face effect and investigate the influence of the surface stress on the
adhesive contact. The non-classical Boussinesq fundamental solu-
tions developed by the authors in a previous paper (Gao et al.,
2013) are employed to formulate this non-classical adhesive contact
model. It is found that, compared with the classical theory, the pull-
off force increases while the corresponding critical contact radius
decreases as a result of the surface effect. A detailed theoretical
study of these significant phenomena is presented and two scaling
laws are constructed based on dimensional analysis. These new
scaling laws describe the characteristics of the adhesive contact at
the nanoscale. It should be mentioned that, for simplicity, the
surface roughness is not considered in the present work.

This paper is organized as follows. The basic theoretical frame-
work of the JKR adhesive contact model with the surface effect is
formulated in Section 2. The numerical results of the developed
theory are illustrated in Section 3. The scaling laws of the pull-off
force and the relevant critical contact radius are constructed in
Section 4 using the dimensional analysis. The conclusions are sum-
marized in Section 5.

2. Basic theory

The goal of this section is to generalize the classical JKR adhe-
sive contact theory to the nanoscale by considering the surface
effect. The non-classical Boussinesq solutions are given first as
the preliminary, and then the basic theoretical framework of the
JKR theory with the surface effect are formulated.

2.1. Non-classical Boussinesq solutions

The fundamental solutions of the Boussinesq problem play an
important role in contact mechanics. At the nanoscale, a non-clas-
sical formulation of the Boussinesq problem with the surface stress
effect was developed by Gao et al. (2013). In the three-dimentional
Boussinesq problem, the normal displacement solution with the
surface effect under axisymmetric normal pressure p(r) is

uz ¼
1

2l

Z 1

0

pðnÞ
gðnÞ ½2ð4m�3Þknþ 8ðm� 1Þ � 2ðknþ 2Þnz�e�znJ0ðnrÞdn;

ð1Þ

where l and m are the shear modulus and the Poisson ratio of the
material, respectively, J0(nr) denotes the zero order Bessel function
of the first kind and

pðnÞ ¼
Z 1

0
rpðrÞJ0ðnrÞdr ð2Þ

is the Hankel transformation of the normal pressure p(r). The func-
tion g(n) is expressed as

gðnÞ ¼ �4þ 4ðm� 1Þðkþ lÞnþ ð4m� 3Þkln2 ð3Þ

and l and k are two intrinsic length scales, which reflect the surface
effect and are defined as

l ¼ r0

l
; k ¼ c�1 þ c1

l
; ð4Þ

where r0 denotes the residual surface stress and c�1; c1 are elastic
constants of the material surface. For details, the reader may refer
to the references by Huang’s group (Huang and Wang, 2006,
2013; Huang and Sun, 2007).

Putting z = 0 in the Eq. (1), we obtain the surface displacement
under normal pressure:

uzðrÞ ¼
1

2l

Z 1

0
p

t
a

� �
2ð4m� 3Þkrt þ 8ðm� 1Þ

gðt; lr; krÞ
J0

r
a

t
� �

dt; ð5Þ

X. Gao et al. / International Journal of Solids and Structures 51 (2014) 566–574 567



Download English Version:

https://daneshyari.com/en/article/277651

Download Persian Version:

https://daneshyari.com/article/277651

Daneshyari.com

https://daneshyari.com/en/article/277651
https://daneshyari.com/article/277651
https://daneshyari.com

