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a b s t r a c t

A higher order model for the analysis of linear, prismatic thin-walled structures that considers the cross-
section warping together with the cross-section in-plane flexural deformation is presented in this paper.
The use of a one-dimentional model for the analysis of thin-walled structures, which have an inherent
complex three-dimensional (3D) behaviour, can only be successful and competitive when compared with
shell finite element models if it fulfills a twofold objective: (i) an enrichment of the model in order to as
accurately as possible reproduce its 3D elasticity equations and (ii) the definition of a consistent criterion
for uncoupling the beam equations, allowing to identify structural deformation modes.

The displacement field is approximated through a linear combination of products between a set of lin-
ear independent functions defined over the cross-section and the associated weights only dependent on
the beam axis; this approximation is not constrained by any ab initio kinematic assumptions. Towards an
efficient application of the approximation procedure, the cross-section is discretized into thin-walled ele-
ments, being the displacement field approximated for each element independently of the displacement
direction. The approximation is thus hp refined enhancing the ‘‘capture’’ of the 3D structural mechanics
of thin-walled structures. The beam model governing equations are obtained through the integration
over the cross-section of the corresponding elasticity equations weighted by the cross-section global
approximation functions.

A criterion for uncoupling the beam governing equations is established, allowing to (i) retrieve the clas-
sic equations of the thin-walled beam theory both for open and closed sections and (ii) derive a set of
uncoupled deformation modes representing higher order effects. The criterion is based on the solution
of the polynomial eigenvalue problem associated with the beam differential equations, allowing to quan-
tify the Saint-Venant principle for thin-walled structures. In fact, the solution of the non linear eigenvalue
problem yields a twelve fold null eigenvalue (representing polynomial solutions) that are verified to rep-
resent beam classic solutions and sets of pairs and quadruplets of non-null eigenvalues corresponding to
higher order modes of deformation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of prismatic thin-walled structures through one-
dimensional models represents a simple and efficient procedure
that has been successfully adopted. This trend of analysis has
evolved through the development of refined beam models in order
to represent the corresponding three-dimensional structural
behaviour side by side with the deployment of an increasingly en-
hanced technology of shell finite elements available to model such
structures.

However, the use of shell finite elements, although being
inherently accurate in modelling the 3D structural behaviour of
thin-walled structures, is not only costly in terms of computing

resources, but also presents a cumbersome set of results that can
difficult the interpretation of the relevant phenomena from less
experienced users. Moreover, the modelling by shell finite ele-
ments requires a significant amount of data that remains unknown
at a preliminary stage of design, being also more prone to model-
ling errors from users when compared with beam models.

The formulation of beam models by reducing the 3D elasticity
formulation to a one-dimensional model must be as accurate as
possible in order to include the most significative structural phe-
nomena. Towards this end, several trends of enhancing beam the-
ories are identified: asymptotical methods, in particular variational
asymptotical beam sectional analysis (VABS) by Yu et al. (2012),
expansion of the beam displacement field through Taylor series
(Carrera and Giunta, 2010; Carrera et al., 2011; Carrera and Petrolo,
2011, Saint-Venant driven models (Toupin, 1965; Knowles, 1966;
Cowper, 1966; Horgan, 1989; Giavotto et al., 1983; Bauchau,
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1985; Laudiero and Savoia, 1990; Rubin, 2003; Ladevèze et al.,
2003; Fatmi, 2007; Morandinia et al., 2010) and refinement of
the classic thin-walled theory which was cast through the seminal
works of Umansky (1940), von Kármán and Christensen (1944),
Flügge and Marguerre (1948) and Vlassov (1961) towards the con-
sideration of the cross-section in-plane deformation and additional
degrees of warping (Bazant, 1968; Bazant and El Nimieri, 1974)
and ‘‘additional’’ deformations modes in order to combine the
warping due to torsion and related with shear-lag effects together
with the cross-section deformation flexure (Mikkola and Paavola,
1980; Paavola, 1990; Tesar, 1996; Razaqpur and Li, 1991, 1994;
Prokic, 1996a,b, 2002 and Kim and Kim, 1999a,b, 2000, 2002,
2003).

Some other formulations stemming from the classic thin-walled
beam theory have been developed by considering the addition of
‘‘representative’’ deformation modes that were obtained through
simplified models that are often thought for specific structural
behaviours and/or load conditions. The analysis of the cross-sec-
tion distortion in box girders through an analogy of a beam on
an elastic foundation is a successful example of these models,
Wright and Abdel-Samad (1968) and Hsu (1995) as well as the
analysis of the distortion presented in Boswell and Zhang (1984)
and Kermani and Waldron (1993) and more recently solutions
for multi-cell distortion given by Pavazza (2002), Pavazza and
Blagojević, 2005 and Park et al. (2005); and the warping due to
the shear-lag effects (Kuzmanovic and Graham, 1981; Foutch and
Chang, 1982 and Dezi and Mentrasti, 1985). The in-plane distortion
of thin-walled structures has been also was considered through the
definition of distortional modes (Saadé et al., 2006).

A beam theory that considers both the warping and the cross-
section distortion, allowing to derive a set of the corresponding
modes is the generalised beam theory (GBT) that since its incep-
tion in Schardt (1966) and Schardt (1989) has been subjected to
several developments. In fact, Initially, the theory did not allow
to consider multi-cell closed cross-sections and open cross-sec-
tions with more than two walls converging in a node, which has
been coped through new formulations by Möller (1982), Simão
(2005) and Gonçalves (2007) and more recently to arbitrary sec-
tions in Dinis et al. (2006), Gonçalves et al. (2009) and Gonçalves
et al. (2010). The theory has also been developed to account for
shear deformation and transverse extension, being also applied
to composite materials in Silvestre and Camotim (2002a) and Sil-
vestre and Camotim (2002b).

A definition of the distortional displacement field within the
framework of GBT has been presented and applied in Jönsson
and Andreassen (2011, 2012) and Andreassen and Jönsson
(2013). This novel approach considers a cross-section discretiza-
tion into elements, which includes rotational degrees of freedom
for the transverse displacements perpendicular to the wall, and
from an approximation similar to the GBT formulations establishes
a governing equation for the beam model. The displacement field
displacement approximation considers the amplitude of the warp-
ing displacement shape functions to be the derivative of the trans-
verse displacement amplitudes. This fact together with shear
constraints allowed to bind together axial and transverse displace-
ments, which was adopted for the definition of warping functions
from the transverse displacements and for rewriting the beam
governing equations in terms of transverse displacements.

The formulation considers a strategy of eliminating classic solu-
tions (axial pure modes, translational modes and rotational modes)
from the beam governing equations in order to derive a set of
equations that defines distortional behaviour. The pure axial
extension is identified as a solution of the equations and a linear
solution is put forward since the amplitude for the axial mode is
admitted to correspond to the derivative of the transverse
displacements. Despite referring to the pure axial mode as an

eigenmode solution, no statement of the corresponding eigenvalue
is presented and hence the corresponding polynomial solution
considered does not identify the respective generalised eigenvec-
tors. By eliminating the axial mode, the set of beam equations is
written in terms of transverse displacements, which is adopted
to identify the transverse rigid cross-section translations and the
pure rotational mode. The translational modes are obtained from
the eigenvectors of a standard eigenvalue problem applied to the
axial stiffness matrix, being the rotational mode defined by requir-
ing that the coupling terms in the axial stiffness cancel. Further-
more, the membrane tangential displacements along each wall
element are set to be equal so as to enforce the transverse strain
of the middle surface null. The beam equations are rewritten for
a new set of coordinates that consider the translational modes,
the rotational modes and the tangential constraint, being tested a
polynomial cubic solution for the translational modes.

The procedure adopted for identifying and in the sequel elimi-
nate the so-called axial, translational and rotational modes is quite
different from that applied in Vieira et al. (2013). In fact, the classic
solutions of beam theory, including shear effects, are obtained
through the eigenvectors and generalised eigenvectors associated
with a 12-fold null eigenvalue, which is a solution of the non-linear
eigenvalue associated with the beam model differential equations.
Moreover, the correct procedure for eliminating these classic
modes from higher order modes is essential to obtain an isospec-
tral transformation of modes.

On the other hand, the GBT formulation of Jönsson and Andreassen
(2011) considers a different strategy for identifying the classic modes.
In fact, the null eigenvalue is identified as the solution associated with
classic modes, but the polynomial solutions put forward for each of
the classic modes are not demonstrated to correspond to the respec-
tive generalized eigenvectors: As a result the solution lacks of consis-
tency insofar as the corresponding algebraic and geometric
multiplicities do not coincide. In fact, in the examples presented in
Jönsson and Andreassen (2011) the classic modes are associated with
a null eigenvalue with an algebraic multiplicity of 8, despite having a
12-fold geometric multiplicity. In the proposed higher order model
the classic solution stems directly from the computation of the Jordan
chain associated with a 12-fold null eigenvalue, clearly identifying
extension, flexure (with and without shear) and torsion classic struc-
tural behaviour, but also rigid body motions.

A semi-analytical finite strip analysis (the constrained finite
strip analysis – cFSM) has been able to shed a light regarding the
mechanical behaviour of thin-walled structures through the sepa-
ration of the corresponding deformation modes (Li et al., 2011;
Ádány and Schafer, 2008). A comparison between the modal ap-
proaches between GBT and is cFSM has been presented in Ádány
et al. (2009).

A one-dimensional model for the three-dimensional structural
analysis of prismatic thin-walled structures with an arbitrary mid-
line geometry considering the cross-section warping together with
its transverse deformation is presented in this paper. This higher
order model represents a novel beam formulation capable of repre-
senting the three-dimensional structural behaviour of thin-walled
structures, being an alternative to other theories such as those of
Pavazza and Blagojević (2005), Dinis et al. (2006), Saadé et al.
(2006), Gonçalves et al. (2010) and Carrera and Giunta (2010).
The beam model is thought to be cast within the framework of
the finite element method and derived in a unified formulation
(i.e. the formulation is independent of the cross-section type).

A previous papers by the authors (Vieira et al., 2013) considers
the cross-section in-plane undeformable in order to obtain a set of
warping and shear modes. A more general formulation including
in-plane deformation is now proposed with a particular focus on
the definition of uncoupled modes. The uncoupling procedure is
derived from a quartic eigenvalue problem, which given its
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