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a b s t r a c t

The main purpose of this work is the computational simulation of the sensitivity coefficients of the
homogenized tensor for a polymer filled with rubber particles with respect to the material parameters
of the constituents. The Representative Volume Element (RVE) of this composite contains a single
spherical particle, and the composite components are treated as homogeneous isotropic media, resulting
in an isotropic effective homogenized material. The sensitivity analysis presented in this paper is
performed via the provided semi-analytical technique using the commercial FEM code ABAQUS and
the symbolic computation package MAPLE. The analytical method applied for comparison uses the addi-
tional algebraic formulas derived for the homogenized tensor for a medium filled with spherical inclu-
sions, while the FEM-based technique employs the polynomial response functions recovered from the
Weighted Least-Squares Method. The homogenization technique consists of equating the strain energies
for the real composite and the artificial isotropic material characterized by the effective elasticity tensor.
The homogenization problem is solved using ABAQUS by the application of uniform deformations on spe-
cific outer surfaces of the composite RVE and the use of tetrahedral finite elements C3D4. The energy
approach will allow for the future application of more realistic constitutive models of rubber-filled poly-
mers such as that of Mullins and for RVEs of larger size that contain an agglomeration of rubber particles.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A homogenization method has been developed for the predic-
tion of the elastic properties of polycrystals on the basis of the
properties of a single crystal, and it is a relatively old idea (Kröner,
1958); some works by Voigt recalled in this study date from the
end of the XIXth century. This technique has been used success-
fully for the prediction of the effective properties of composites
consisting of reinforcing particles and fibers (Christensen, 1979)
using some upper and lower bounds or direct approximations,
and it has also been used for electric, thermal and magnetic fields
(Milton, 2002). In the present day, we solve homogenization
problems using various computational implementations of the
Finite Element Method (FEM) to solve exemplary problems for
the Representative Volume Element (RVE) of the entire heteroge-
neous structure to predict its equivalent physical properties. There
are essentially two different ways, at least in the micromechanics
of heterogeneous media, to accomplish this goal. The first one is
based on the periodicity assumption, wherein the effective
properties are calculated using some geometrical expansion proce-
dure (Bensoussan et al., 1978; Kalamkarov and Kolpakov, 1997;

Kamiński, 2005; Sanchez-Palencia, 1980), while the second
approach relies on determining the strain energy caused by
applying uniform strain fields to the RVE (and does not demand
any periodicity conditions) (Kushnevsky et al., 1998). However,
applications of the homogenization method today extend far
beyond the micromechanics of composites and also address
nanocrystalline structures (El-Khoury et al., 2011; Gürses and El
Sayed, 2011), nonlinear constitutive relations for polycrystals
(Sundararaghavan and Zabaras, 2006) and even certain contact
problems (Belgith et al., 2010). Sensitivity analysis itself (Frank,
1978; Haug, 1986; Kleiber et al., 1997) and its relation to the
homogenized characteristics of composites is also not a new theo-
retical problem (Fish and Ghouali, 2001; Kamiński, 2003). This
relation is addressed in classical sensitivity analysis methods such
as the Finite Difference Method (FDM) (Kamiński, 2003), the Direct
Differentiation Method (DDM) and the Adjoint Variable Method
(AVM). It is applied to calculate the sensitivity coefficients of effec-
tive tensors with respect to the properties of the original compo-
nents (Noor and Shah, 1993; Kamiński, 2005), for certain
topologies (Hassani and Hinton, 1998; de Kruijf et al., 2007) or
for shape optimization (Rohan and Miara, 2006), and it is also
related to the understanding of composites with uncertainties
(Kamiński, 2009; Arwade and Deodatis, 2011). This particular re-
search area is still attracting much attention, and there are plenty

0020-7683/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.10.025

⇑ Tel.: +48 42 6313571.
E-mail addresses: mm_kaminski@wp.pl, Marcin.Kaminski@p.lodz.pl.

International Journal of Solids and Structures 51 (2014) 612–621

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2013.10.025&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2013.10.025
mailto:mm_kaminski@wp.pl
mailto:Marcin.Kaminski@p.lodz.pl
http://dx.doi.org/10.1016/j.ijsolstr.2013.10.025
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


of recent results focused on computational issues (Davis and
Singler, 2011; Kowalczyk, 2012), the scale-coupling effect (Unger
and Könke, 2008), thermo-electro-magnetic applications (Choi
and Yoo, 2008; Zhou and Li, 2008) and nanostructures (Benai and
Wenig, 2009), but the well-established methods are still being
applied and revisited (Neto et al., 2010; Yu et al., 2012).

Considering the above discussion, the main issue in this paper is
the computational investigation of the sensitivity coefficients of
the energy under uniform strain of the RVE and the investigation
of the resulting homogenized tensor with respect to the elastic
parameters of its components. Although the 3D FEM analysis
is demonstrated for a composite filled with a certain type of
particle, the methodology is also valid for composites reinforced
with short or long fibers. Similar studies have been conducted pre-
viously (Yanase and Ju, 2012) but only for composites reinforced,
rather than filled, with particles (Burr and Monnerie, 2000); in this
case, of course, the matrix has a smaller Young modulus and usu-
ally a larger Poisson ratio. The method of determining the sensitiv-
ity coefficients remains the same as for particle-reinforced
composites, but it may yield quite different qualitative results.
The sensitivity analysis, however, is performed in a non-traditional
way, using the so-called response polynomial functions that relate
all the components of the effective elasticity tensor to the base
material parameters of the composite components, which are all
determined in a semi-analytical manner (the so-called Response
Function Method, or RFM). First, these response functions are
created using several solutions of the RVE problem with the design
parameters fluctuating around their average values and using the
classical Weighted version of the Least-Squares Method (WLSM)
(Kamiński, 2013). This method is implemented in the symbolic
computer program MAPLE, v. 14, to recover the unknown
coefficients of such a polynomial form. Then, we use analytical
differentiation to calculate the sensitivity coefficients of the
homogenized tensor, and furthermore, these coefficients are
derived as functions of the input design parameters in the close
neighborhood of their mean values and also with respect to the
order of the approximating polynomial. This approach provides
an effective means for the engineering optimization of such a com-
position of matrix and filler, where there is still some opportunity
to modify the elastic properties of the components within certain
intervals during the manufacturing process. Numerical experi-
ments are performed on a very dense mesh to eliminate the mesh
sensitivity of the coefficients being determined and also using tet-
rahedral finite elements in the commercial program ABAQUS,
wherein a detailed verification of the interface continuity was per-
formed to include some 3D discontinuities in future extensions of
this model (Yanase and Ju, 2012). Such a detailed FEM discretiza-
tion eliminates the necessity for any mesh adaptation procedures,
but for future applications, some adaptation to optimize the mesh
would be advised. The benefit of this fine mesh and, at the same
time, the positive verification of the method is the perfect agree-
ment of the resulting homogenized characteristics with these that
are analytically obtained by following the Eshelby model (Chris-
tensen, 1979) and based only on the volume fractions; this situa-
tion might change if the spherical particle shape were to be
replaced with an ellipsoidal one, for example. It should be empha-
sized that the overall computational effort requires n times the ef-
fort of the deterministic solution to the RVE problem, where n is
the total number of trial points necessary to build up the response
functions Cðeff Þ

ijkl ¼ Cðeff Þ
ijkl ðhÞ (four different sets of responses associ-

ated with all the input design parameters and three responses
for each of these components individually). The first part is per-
formed entirely using the FEA system ABAQUS, while the approxi-
mation is performed using the MAPLE system. Further numerical
processing of these response functions during the analytical com-
putation of both first- and second-order coefficients is very rapid,

while the use of Central Finite Difference algorithms usually dou-
bles the time consumption of the entire solution.

2. Homogenization method

Let us consider a heterogeneous and bounded continuum
X � R3, where elastic properties of the constituents included in
this region are treated as design parameters, and they result in
the displacement field ui(x) and the stress tensor rij(x), which
satisfy the linear elasticity elliptic boundary value problem; vector
x = (x1, x2, x3) denotes local Cartesian coordinates (see Fig. 1). The
Representative Volume Element (RVE) X of this composite has
dimensions of 2l1 � 2l2 � 2l3 in these coordinates, respectively,
and contains a centrally located spherical particle that is perfectly
connected to a continuous matrix. Let us assume further that there
are non-empty subsets of the external boundaries of the region X,
namely, oXr and oXu, where the Dirichlet and von Neumann
boundary conditions are imposed, respectively. It should be
emphasized that the proposed homogenization method does not
require any Dirichlet boundary conditions, in contrast to the
homogenization approach presented in Kamiński (2005, 2013),
where both boundary conditions were used.

Considering the proposed numerical technique, the entire set of
boundary-value problems with the same boundary conditions and
with additionally modified input design variables hðaÞ; a ¼ 1; . . . ;n
(Kleiber et al., 1997; Kamiński, 2005), is to be solved. Henceforth,
we denote the total number of different values of our design
parameter (chosen near its average value) by n. Thus, the upper
index a indicates the different structural responses associated
with these input values. The solution to the particular boundary
differential-equation systems that describe the static equilibrium
near the average value of this parameter is sought:

rðaÞij ðxÞ ¼ CðaÞijklðxÞe
ðaÞ
kl ðxÞ; ð1Þ

eðaÞij ðxÞ ¼
1
2

@uðaÞi ðxÞ
@xj

þ
@uðaÞj ðxÞ
@xi

 !
; ð2Þ

rðaÞij;j ðxÞ ¼ 0; ð3Þ

uðaÞi ðxÞ ¼ ûiðxÞ; x 2 @Xu; ð4Þ

rðaÞij ðxÞnj ¼ t̂iðxÞ; x 2 @Xr: ð5Þ

The elasticity tensor that satisfies the symmetry, boundedness
and ellipticity conditions is defined as

Fig. 1. Spatial idealization of periodic two-component composite.
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