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a b s t r a c t

In order to represent temperature-dependent mechanical material properties in a thermomechanical
consistent manner it is common practice to start with the definition of a model for the specific Helmholtz
free energy. Its canonical independent variables are the Green strain tensor and the temperature. But to
represent calorimetric material properties under isobaric conditions, for example the exothermal behav-
iour of a curing process or the dependence of the specific heat on the temperature history, the temper-
ature and the pressure should be taken as independent variables. Thus, in the field of calorimetry the
Gibbs free energy is usually used as thermodynamic potential whereas in continuum mechanics the
Helmholtz free energy is normally applied. In order to simplify the representation of calorimetric phe-
nomena in continuum mechanics a hybrid free energy density is introduced. Its canonical independent
variables are the isochoric Green strain tensor, the pressure and the temperature. It is related to the
Helmholtz free energy density by a Legendre transformation. In combination with the additive split of
the stress power into the sum of isochoric and volumetric terms this approach leads to thermomechan-
ical consistent constitutive models for large deformations. The article closes with applications of this
approach to finite thermoelasticity, curing adhesives and the glass transition.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering, constitutive theories are usually formulated to
represent mechanical material properties under isothermal condi-
tions. In this context, the reader is referred to the articles of Lion
(1997), Boyce et al. (2000), Laiarinandrasana et al. (2009), Miehe
et al. (2009) or Johlitz et al. (2010) in which the temperature-
dependent stress–strain behaviour of elastomers and other poly-
mers under finite deformations is addressed. Since stress- or tem-
perature-induced changes in volume are relatively small under
typical loading states and magnitudes, the stress–strain behaviour
of a large number of polymers can be assumed as nearly isochoric.
Accordingly, under such loadings the effect of the volumetric part
of the constitutive model to the stress–strain response is relatively
small, for example in the case of tensional loadings of tall speci-
mens. In order to identify the material parameters of constitutive
models or to implement them into finite element programs, formu-
lations in which the stress tensor is the dependent mechanical
state variable are required. For this reason, the specific Helmholtz
free energy is usually taken as fundamental thermodynamic poten-
tial in continuum mechanics. It should be mentioned that the iso-
choric specific heat which is needed for the evaluation of the

related differential equation of heat conduction can easily be calcu-
lated from the Helmholtz free energy because it is its thermody-
namically associated caloric quantity. But caused by their high
bulk modulus, the isochoric specific heat cannot be measured for
solids. If, for example, the isobaric specific heat has been measured
in a standard calorimetric experiment but the isochoric specific
heat is needed as input parameter for a finite element program,
the difference between them is frequently ignored because in
many situations it has minor influence to the simulation results.
Following Haupt (2002), in linear thermoelasticity the isochoric
and isobaric specific heats cv and cp are constant material parame-
ters and are connected as follows:

cp � cv ¼
9h0Ka2

q
ð1Þ

The application of (1) is only possible in sufficient small tem-
perature intervals in which cv and cp are nearly constant. In the
case of polymers, the mass density is about q � 103 kgm�3, a typ-
ical value for the bulk modulus is about K � 3000 MPa, the linear
thermal expansion coefficient is of the order of a � 10�4 K�1 and
h0 � 300 K is a rough estimate for the reference temperature. Based
on these values, 9h0Ka2=q � 81 J kg�1 K�1 is calculated. Since
cp � cv depends in a quadratic manner on the expansion coefficient,
a larger value of a � 2 � 10�4 K�1 leads to 9h0Ka2=q �
324 J kg�1 K�1. Assuming cp � 1500 J kg�1 K�1 as a typical value
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for the isobaric specific heat of polymers, the relative difference
(cp � cv)/cp is between 5% and more than 20%. In the case of
mechanically incompressible but thermally expandable materials
like rubber, the term ‘‘isochoric specific heat’’ makes no sense.

In thermochemistry, on the other hand, the caloric material
properties as well as the thermal expansion behaviour are often
in the centre of interest (cf. Kamal et al., 1973; Bauer et al., 2000;
Gutzow et al., 2007; Garden, 2007a,b; Bailey et al., 2008; Richert,
2011 and the citations therein). In order to represent this type of
material behaviour, the specific Gibbs free energy is typically taken
as fundamental thermodynamic potential (cf. Gutzow et al., 2007;
Lion et al., 2011). The main reason for this choice is the fact that
calorimetric and thermal expansion experiments are commonly
carried out under prescribed pressure and temperature histories.
In many commercial differential scanning calorimetry apparatuses,
the pressure is constant and the temperature is a user-definable
function of time. It would be quite strange in this situation to take
the specific Helmholtz free energy as thermodynamic potential be-
cause its associated caloric quantity is the isochoric specific heat. In
the case of isotropic materials under free boundary conditions,
only changes in volume occur when the pressure and the temper-
ature are varying. Therefore, the isochoric part of a three-dimen-
sional constitutive model (cf. Lion et al., 2010; Lion et al., 2011)
has no influence to the caloric response and the thermal expansion
behaviour. Consequently, Gutzow et al. (2007) formulated their
model only for the volumetric material behaviour, i.e. the Gibbs
free energy depends on temperature, pressure and an internal var-
iable which they denoted as order parameter. The application of
the Gibbs free energy approach in the field of three-dimensional
solid mechanics is promising in the case of linear thermoviscoelas-
ticity (cf. Lion et al., 2010) when the mechanical model is solvable
for the stress tensor. But in the case of large deformations or pro-
nounced physical nonlinearities such a formulation would lead to
implicit constitutive equations which are no more solvable for
the stress tensor.

In a recent essay by Hartmann et al. (2013), the field-assisted
sintering of copper and ceramic powder in graphite tools was mod-
elled, simulated and validated. During these processes, the tran-
sient temperature variations can reach several hundred degrees.
In order to develop a realistic constitutive model for such a process,
not only the knowledge about the temperature-dependent
mechanical material behaviour is important but also the consider-
ation of the caloric material behaviour. In the relevant temperature
range, the experimental data of the isobaric specific heat of graph-
ite exhibits an increase of more than 120%. As it is common prac-
tice, the authors developed a constitutive model that is based on
the specific Helmholtz free energy such that the empirical function
which they fitted to the experimental curve of the specific heat has
to be interpreted as isochoric specific heat. This statement be-
comes clearly when the time derivative of the volume strain in
their differential equation of heat conduction is set to zero and
can be justified as follows: Since graphite possesses a relative small
linear thermal expansion coefficient of a � 4.6 � 10�6 K�1, a den-
sity of q � 1850 kgm�3 and a bulk modulus of about
K � 6000 MPa, the value of 9h0Ka2=q � 0:2 J kg�1 K�1 is obtained
for the difference cp � cv when h0 � 300 K is assumed. For this rea-
son, it is not required to distinguish between the isochoric and the
isobaric specific heat in the case of graphite at least under small
temperature changes. Since the terms isochoric and isobaric are
precisely defined, caution is necessary.

These considerations have shown that a temperature- and pres-
sure-dependent free energy of the Gibbs type is advantageous
when isobaric caloric or volumetric thermal expansion data have
to be constitutively modelled. If mechanical stress–strain data
has to be modelled or a finite element implementation has to be
realised, it is more convenient to develop a model which is based

on the temperature- and deformation-dependent Helmholtz free
energy. In order to separate volumetric effects from changes in
shape it is useful to split the deformation gradient into the corre-
sponding contributions. For these reasons, a hybrid free energy
density is proposed which combines all these aspects. In Section
2 of this paper, the fundamentals and the general thermomechan-
ical framework are provided. In Section 3, it is shown how caloric
quantities like the enthalpy rate or the isobaric specific heat can
be taken into account in a stringent manner. Section 4 discusses
different applications of the theory and Section 5 closes with a
discussion.

2. Thermomechanical approach

In order to represent thermomechanical material properties in
nonlinear continuum mechanics the space- and time-dependent
deformation gradient F is a fundamental geometrical quantity (cf.
Haupt, 2002). Its determinant J = det (F) describes the ratio of the
volume elements between the reference and the current configura-
tion. As proposed by Flory (1961), the tensor F can be multiplica-
tively decomposed into pure volumetric and isochoric
contributions:

F ¼ FF̂ ð2Þ

F ¼ J1=31 ð3Þ

F̂ ¼ J�1=3F ð4Þ

The isochoric part F̂ is not influenced by changes in volume and
the volumetric part F does not depend on changes in shape. Based
on the tensors F and F̂, two different Cauchy–Green tensors C = FTF
and Ĉ ¼ F̂TF̂ which are calculated with the total deformation gradi-
ent and its isochoric part are introduced. This motivates the follow-
ing definitions of two Green strain tensors and of the volume
strain:

E ¼ 1
2
ðC� 1Þ ð5Þ

Ê ¼ 1
2
ðĈ� 1Þ ð6Þ

evol ¼ J � 1 ð7Þ

Considering these expressions, the total Green strain tensor E
can be expressed as follows:

E ¼ 1
2
ðJ2=3Ĉ� 1Þ ¼ J2=3Êþ 1

2
ðJ2=3 � 1Þ1 ð8Þ

Since the isochoric Cauchy Green tensor Ĉ is unimodular, the
constraint detðĈÞ ¼ 1 holds for arbitrary deformation histories. Dif-
ferentiating this relation with respect to time, the following
orthogonality relation can be derived:

d
dt

det ĈðtÞ
� �

¼ 0 ) Ĉ�1 � _̂C ¼ 0 ð9Þ

The dot between two second order tensors is the scalar product,
A � B ¼ tr ABT

� �
¼
P3

i;k¼1AikBik, and tr(A) = A11 + A22 + A33 is the
trace of the second order tensor A. In order to separate volumetric
and isochoric effects also with regard to the stress, the Cauchy
stress tensor T is represented as the sum of a spherical and a devi-
atoric part:

T ¼ �p1þ TD ð10Þ

p ¼ �1
3

trðTÞ ð11Þ
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