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a b s t r a c t

In recent years, different fields of engineering have been increasingly incorporating functionally graded
materials with variable physical properties that significantly improve a quality of elements of designs.
The efficiency of practical application of thermoelastic inhomogeneous materials depends on knowledge
of exact laws of heterogeneity, and to define them it is necessary to solve coefficient inverse problems of
thermoelasticity.

In the present research a scheme of solving the inverse problem for an inhomogeneous thermoelastic
rod is presented. Two statements of the inverse problem are considered: in the Laplace transform space
and in the actual space. The direct problem solving is reduced to a system of the Fredholm integral equa-
tions of the 2nd kind in the Laplace transform space and an inversion of the solutions obtained on the
basis of the theory of residues. The inverse problem solving is reduced to an iterative procedure, at its
each step it is necessary to solve the Fredholm integral equation of the 1st kind; to solve it the Tikhonov
method is used. Specific examples of a reconstruction of variable characteristics required are given.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

For many years, layered composites have been widely used as a
coating for elements of structures operating in high temperature
environment (such as airplanes and spaceships, gas turbine blades,
cutting tools, implants in biomedical industry, etc.) as they have
been providing the structure’s mechanical and thermal properties
required. However, the jumps of material properties through the
interface between discrete materials may cause large stress con-
centration and formation of plastic deformation or cracking.

In recent years, functionally graded materials have been used as
an alternative to layered composites (Aboudi et al., 1995; Lee et al.,
1996; Suresh and Mortensen, 1998; Wetherhold et al., 1996) to
avoid material properties jumps through the interface due to their
continual change. In this case, the thermomechanical characteris-
tics are not constants but some functions of spatial coordinates,
i.e. the material acquires the spatial heterogeneity. Such inhomo-
geneous structure may be obtained not only within the manufac-
turing process, but also during an operation under radiation,
strong magnetic fields, and heavy temperature drops.

It is almost impossible to predict changes in the structure of
materials caused by external actions. The efficiency of practical
application of thermoelastic inhomogeneous materials depends
on knowing exact laws of heterogeneity. The problem of finding

the thermomechanical characteristics of inhomogeneous bodies
is the coefficient inverse problem of thermoelasticity.

To date, there is already a considerable experience of investiga-
tion inverse problems. The general methods of solving inverse
problems are presented in the monographs and papers (Alifanov
et al., 1988; Denisov, 1994; Isakov, 2005; Kabanikhin, 2009; Vatu-
lyan, 2007; Gockenbach et al., 2008; Jadamba et al., 2011), etc. But
still there is a lack of researches of the coefficient inverse problems
of thermoelasticity (Apbasov and Yahno, 1986; Lomazov, 2002;
Lukasievicz et al., 1996). However, some specific problems con-
cerned with finding variable coefficients of operators of thermal
conductivity (Alifanov et al., 1988; Dimitriau, 2001; Hao, 1998; Isa-
kov and Bindermann, 2000; Pobedrya et al., 2008; Xu et al., 2002)
and of the elasticity theory (Alekseev, 1967; Belishev and Blago-
vecshenskey, 1999; Chen and Gockenbach, 2007; Jadamba et al.,
2008; Kabanikhin, 1988; Rakesh, 1993; Vatulyan, 2010; Yakhno,
1990) are separately studied good enough. One of the basic ap-
proaches to a solving of inverse problems of heat conduction is
its reduction to minimize non-quadratic residual functional in a fi-
nite dimensional subspace (Alifanov et al., 1988; Kabanikhin et al.,
2008; Pobedrya et al., 2008). It is necessary to use iterative pro-
cesses requiring the calculation of the functional gradient at each
step. There is an extensive theoretical foundation for gradient min-
imization techniques (Alifanov et al., 1988; Hao, 1998). However,
the shortcomings of such techniques are a strong influence of a
choice of initial approximation on a convergence of the iteration
process, and requirements to the objective function. In addition,
with increasing number of unknowns delivering the minimum of
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the objective function, the amount of calculations significantly
increases.

When solving inverse problems of the theory of elasticity, the
most commonly used method are the method of Volterra operators
(Yakhno, 1990), the method of inversion of the difference scheme
(Kabanikhin, 1988), the linearization method (Alekseev, 1967),
and the boundary control method (Belishev and Blagovecshenskey,
1999). At the same time for a number of modern materials, when
solving the inverse problems, it is necessary to take into account
the coupling of thermal and mechanical fields. The inverse prob-
lems of thermoelasticity for inhomogeneous bodies are scarcely
investigated and mainly limited by weakly inhomogeneous mate-
rials (Lomazov, 2002) due to the difficulties in the construction
of nonlinear operator relations that bind the desired and the mea-
sured (during an experiment) functions. However, in some papers
(Vatulyan, 2007; Dudarev and Vatulyan, 2011; Nedin and Vatuly-
an, 2011; Nedin and Vatulyan, 2013a; Nedin and Vatulyan,
2013b) devoted to the inverse problems of the mechanics of re-
lated fields, this difficulty was overcome with the help of general-
ized reciprocal relations. At that the linearized Fredholm integral
equations of the 1st kind were obtained to find the corrections of
the coefficients recovered.

In the present paper the formulations and solutions of the coef-
ficient inverse problem for an inhomogeneous rod are described in
case of an arbitrary coupling parameter. After applying the Laplace
transformation, the direct problem was reduced to solving a sys-
tem of the Fredholm integral equations of the 2nd kind with re-
spect to the transforms of temperature and pressure, and finding
the actual space on the basis of the theory of residues. On the basis
of the generalized reciprocity relation and the linearization meth-
od, the inverse problem was reduced to stepwise solving of the
Fredholm integral equation of the 1st kind. A series of computa-
tional experiments was conducted for exact and noisy input data.
The recommendations for a practical employment of the approach
proposed are given.

2. Statement of the inverse problem

Let us consider a problem of longitudinal oscillations of the
inhomogeneous thermoelastic rod of length l rigidly fixed at the
end x ¼ 0, and distinguish two ways of oscillations excitation:
the thermal way and the mechanical one.

In case of the excitation of oscillations under the action of the
heat flow Q ¼ q0uðtÞ applied to the end x ¼ l the initial-boundary
value problem takes the following form (Nowacki, 1970; Vatulyan
and Nesterov, 2012):

@rx
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¼ qðxÞ @

2u
@t2 ; ð1Þ

rx ¼ EðxÞ @u
@x
� cðxÞh; ð2Þ

@

@x
kðxÞ @h

@x

� �
¼ ceðxÞ

@h
@t
þ T0cðxÞ

@2u
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; ð3Þ

hð0; tÞ ¼ uð0; tÞ ¼ 0; �kðlÞ @h
@x
ðl; tÞ ¼ q0uðtÞ; rxðl; tÞ ¼ 0; ð4Þ

hðx;0Þ ¼ uðx;0Þ ¼ @u
@t
ðx;0Þ ¼ 0; ð5Þ

If the rod is oscillated by the force F ¼ p0kðtÞ applied to the end
x ¼ l then the boundary conditions (4) in the problem (1)–(5) will
take another form:
@h
@x
ðl; tÞ ¼ 0; rxðl; tÞ ¼ p0kðtÞ: ð6Þ

The inverse problem is to determine one of the thermomechanical
characteristics of the rod (the specific volumetric heat capacity
ceðxÞ, the thermal conductivity kðxÞ, the rod’s density qðxÞ, the
Young modulus EðxÞ, the coefficient of thermal stress cðxÞ) when
knowing the rest characteristics of (1)–(5) on the basis of some
additional data at the boundary.

In case of the thermal loading of the rod the temperature incre-
ment at its end is used as the additional data:

hðl; tÞ ¼ f ðtÞ; t 2 T1; T2½ � ð7Þ

and in case of the mechanical loading the displacement at the rod’s
end is used:

uðl; tÞ ¼ gðtÞ; t 2 T3; T4½ �: ð8Þ

If the temperature and the displacement are known at any given
time then the inverse problem may be formulated in the Laplace
transform space.

In this case the additional information is

hðl;pÞ ¼ ~f ðpÞ; p 2 ½0;1Þ; ð9Þ

uðl; pÞ ¼ ~gðpÞ; p 2 ½0;1Þ: ð10Þ

3. Solving the direct problem for an inhomogeneous
thermoelastic rod

The direct problem on the vibration of a thermoelastic rod with
arbitrary laws of variation of coefficients of differential operators
can be solved only numerically.

Let us rewrite (1)–(5) in a dimensionless form. To do this we
introduce the following parameters and variables: z ¼ x

l ; z 2 ½0;1�;
�kðzÞ ¼ kðzlÞ

k0
; �cðzÞ ¼ cðzlÞ

c0
; �qðzÞ ¼ qðzlÞ
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; �EðzÞ ¼ EðzlÞ
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c0
; t1 ¼ l2c0

k0
,

t2 ¼ l
ffiffiffiffi
q0
E0

q
; s1 ¼ t

t1
; W1 ¼ c0h

E0
; U1 ¼ u

l ; X1 ¼ rx
E0
; d ¼ c2

0T0

c0E0
, x ¼ q0c0 l

k0E0
;

e ¼ t2
t1
¼ k0

c0 l

ffiffiffiffi
q0
E0

q
; k0 ¼ maxx2½0;l�kðxÞ; c0 ¼ maxx2½0;l�cðxÞ; E0 ¼maxx2½0;l�

EðxÞ; q0 ¼maxx2½0;l�qðxÞ; c0 ¼maxx2½0;l�cðxÞ.
Here d is the dimensionless coupling parameter, e is the ratio of

the characteristic time of the sound vibration t2 to the time of the
thermal vibration t1.

Hence, the boundary-value problem (1)–(5) takes the form:
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In case of the excitation of longitudinal oscillations under the
action of mechanical load p0kðtÞ we may formulate the dimension-
less problem in a same way as previously except the following dif-
ference: l ¼ p0

E0
; s2 ¼ t

t2
; W2 ¼ c0h

E0
, U2 ¼ u

l ; X2 ¼ rx
E0

.
In this case the dimensionless boundary conditions take the

form:

W2ð0; s2Þ ¼ U2ð0; s2Þ ¼ 0;
@W2

@z
ð1; s2Þ ¼ 0; X2ð1; s2Þ ¼ lkðs2Þ:

ð16Þ
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