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a b s t r a c t

We present a novel three-dimensional boundary-element formulation that fully characterizes the
mechanical behavior of the external boundary of a multi-layered viscoelastic coating attached to a hard
rotating spherical core. The proposed formulation incorporates both, the viscoelastic, and the inertial
effects of the steady-state rolling motion of the sphere, including the Coriolis effect. The proposed
formulation is based on Fourier-domain expressions of all mechanical governing equations. It relates
two-dimensional Fourier series expansions of surface displacements and stresses, which results in the
formation of a compliance matrix for the outer boundary of the deformable coating, discretized into
nodes. The computational cost of building such a compliance matrix is optimized, based on configura-
tional similarities and symmetry. The proposed formulation is applied, in combination with a rolling con-
tact solving strategy, to evaluate the viscoelastic rolling friction of a coated sphere on a rigid plane.
Steady-state results generated by the proposed model are verified by comparison to those obtained from
running dynamic simulations on a three-dimensional finite element model, beyond the transient. A
detailed application example includes a verification of convergence and illustrates the dependence of
rolling resistance on the applied load, the thickness of the coating, and the rolling velocity.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction and background

Viscoelasticity is a time-dependent model of material behavior
capable of replicating the storage and restitution (elasticity), and
the dissipation in the bulk at different internal rates (viscosity),
of variable proportions of the deformation energy. Particles and
solids of rounded shape presenting viscoelastic properties, or inter-
acting mechanically with other viscoelastic entities, with or with-
out direct contact, are involved in many aspects of sciences and
technologies, in various fields, and at different length-scales, from
the smallest fundamental particles (e.g. Berg, 1999), to nano-mate-
rials and living cells (e.g. Bahadur and Schwartz, 2008; Bose et al.,
2010; Coghill, 2012; Subramaniam et al., 2013; Xu and Shao, 2008),
to various sorts of objects and systems at the human scale, such as
the motion of rigid spheres in polymer gels (e.g. Hunter, 1968), the
vibratory sorting of fruits and vegetables (e.g. Arnold, 1985), poly-
mer-coated grinding spheres (e.g. Langus et al., 2011), rubber bul-
lets (e.g. Bir et al., 2012), particle dampers (e.g. Els, 2009),
structural damping fillers (e.g. Oyadiji, 1996), computer mouse-
balls, spherical wheels for vehicles and robots (e.g. Wu and Hwang,
2008; Wu et al., 2011), flows of viscoelastic fluids around spheres
(e.g. Atsbha, 1993), flows of granular materials (e.g. Yung et al.,
2007; Zhou et al., 1999), human or animal joints (e.g. Esat and
Ozada, 2010), and rolling balls in seismic isolation platforms (e.g.

Harvey et al., 2013; Tsai et al., 2010), to the largest planets, and
stars (e.g. Bambusi and Haus, 2012).

Among all possible types of static or dynamic interactions
between one, two, a few, or even very large numbers of rounded
entities, those involving contact are very common, and often
accompanied by losses of mechanical energy. Upon rolling or slid-
ing, mechanical energy is transformed into heat in the continuum
of those of the interacting objects that are characterized by a visco-
elastic behavior. This dissipative process in the bulk, known as vis-
coelastic ‘‘rolling resistance’’, or viscoelastic ‘‘rolling friction’’, is
reflected by changes in the mechanical fields (i.e. the stresses
and strains) across the contact interfaces, so as to resist the ongo-
ing motion.

Problems related to the resistance incurred by rigid indenters,
such as cylinders, spheres and cones, rolling or sliding on a visco-
elastic plane, are addressed quite extensively in the scientific liter-
ature, both experimentally and from a modeling perspective, in
two and three dimensions, and at different scales, such as in the
works of Bueche and Flom (1959), Chertok and Putignano (2013),
Chertok et al. (2001), Flom and Bueche (1959), Flom (1960), Galin
and Gladwell (2008), Greenwood and Tabor (1958), Greenwood
et al. (1961), Hunter (1961), Johnson (1985), Lee et al. (2009),
May et al. (1959), Persson (2010), Pöschel et al. (1999), Qiu
(2006), Tabor (1952, 1955) and Zéhil and Gavin (2013a,b,c), to cite
a few. Alternatively, the rolling contact between viscoelastic cylin-
ders, or between a viscoelastic cylinder and a rigid plane is ana-
lyzed for instance by Golden and Graham (2001), Kumar et al.
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(1988), Morland (1967, 1968), Munisamy et al. (1991), Nowell and
Hills (1988), Oden and Lin (1986), Qiu (2009) and Wang and
Knothe (1993), while Hall (2001) presents a nice review of the fun-
damentals of rolling resistance from the perspective of the tire
industry. However, quite surprisingly, problems involving the roll-
ing/sliding friction of viscoelastic spheres have received far less
attention. In the following, we briefly review four studies that fo-
cus on the rolling resistance incurred by a solid viscoelastic sphere
on a rigid plane, mostly, in narrow ranges of the parameters.

Brilliantov and Pöschel (1998) propose an approximate closed-
form expression for the friction coefficient of a solid viscoelastic
sphere of radius R rolling on a hard plane, in quasi-static conditions
and under small deformations. The authors assume that the char-
acteristic time of the motion, defined as the ratio of the sphere’s
deformation d ¼ R� H (H being the distance between the center
of the deformed sphere and the contact surface) to its rolling veloc-
ity Vs, is much larger than the material’s internal time scales sk. In
agreement with this regime of motion and with the small strain
assumption d=R� 1, inertial forces are neglected and the vertical
displacement field is approximated by the corresponding result
of the stationary contact problem, as given by Hertz (1881). The
behavioral characterization of the viscoelastic material is limited
to two viscous parameters, or equivalently, to a single relaxation
time for each of the shear modulus and the bulk modulus. In fact,
the stress field is written as the sum of an elastic part re, and a vis-
cous part rv , which corresponds to the Kelvin–Voigt model, char-
acterized by a constant storage modulus, and by a loss modulus
increasing linearly with frequency. This choice is consistent with
the other assumptions retained by the authors in the sense that
the linearization of any frequency-domain viscoelastic master-
curves about zero frequency, corresponds to a Kelvin–Voigt model.
This fact is readily inferred, for instance, from their Eqs. (65a) and
(65b). It is assumed that the elastic part of the contact stress field is
almost unaffected by the (slow) motion, and that it remains
roughly symmetrical. Its contribution to the resisting torque Tr is
hence neglected, in comparison to that of the viscous stress field.
The authors show that, within the framework of the proposed the-
ory, the resisting torque scales linearly with the vertical load ap-
plied to the rolling sphere P, with its radius R, its angular speed
X, and therefore with its velocity Vs � RX. The proposed expres-
sion is however flawed due to an error in a coordinate system
transformation, as recently determined by Zheng et al. (2011).

A few years later, Yung and Xu (2003) argue that, in most prac-
tical cases, the material’s internal rates of dissipation cannot be
considered much smaller than the characteristic time of motion,
and therefore conclude that more accurate expressions are needed
for the rolling resistance of viscoelastic spheres, which take into ac-
count the ‘‘influence of relaxation’’. To this aim, the authors ‘relax’
the assumption d=Vs � sk, attempting to reveal the nonlinear
dependence of rolling resistance on velocity, at moderately higher
rates of motion. They however stipulate, for simplicity, that the
fields in the continuum of the sphere, at a given cycle, are not influ-
enced by the preceding cycles, which is equivalent to maintaining
the limiting condition that Xsk � 1. It is interesting to note that
the latter constraint is satisfied implicitly under the assumptions
retained earlier by Brilliantov and Pöschel (1998), i.e.
Xsk � d=R� 1. In contrast, Yung and Xu (2003)’s assumptions
that Xsk � 1 and that d=R� 1 are unconnected, which expands
the applicability domain of their theory to the nonlinear regime,
by increasing the upper bound on X. In deriving a nonlinear
relation for rolling resistance, the authors make several other
simplifying assumptions, some of which are quite limiting, and
somewhat inconsistent with their stated goal, such as retaining
one Kelvin–Voigt element to model the material’s behavior. In-
deed, this material model is characterized by a single rate of inter-
nal dissipation and is known to better reflect creep than relaxation.

Other approximations include: (i) introducing the viscous behavior
vertically and pointwise (ii) neglecting inertial effects under the
quasi-static approximation, (iii) retaining the same contact radius
rc and deformation d as the stationary Hertzian solution, (iv)
assuming a sinusoidal stress distribution across the contact sur-
face, calibrated to yield the same maximum contact pressure as
that of the stationary solution, (v) evaluating an ‘average’ density
of dissipated energy at one point of ‘average’ position with ‘aver-
age’ values of the fields, and (vi) evaluating the total dissipation
by integration over a ‘‘deformed volume’’ 2pRrcd of ring-like cross
section defined by the contact path 2pR, the ‘average’ contact
width rc , and the deformation d. The resulting analytical expres-
sion for rolling resistance is quite cumbersome. A numerical exam-
ple reveals that, according to the proposed theory, rolling friction
first increases, then decreases, with increasing velocity. However,
given the constitutive model retained, and in the absence of iner-
tial effects, the physical mechanisms causing the rolling friction
to decrease with increasing speed is rather unclear.

Xu et al. (2007) present an experimental apparatus that mea-
sures the steady-state coefficient of rolling friction Tr=ðPRÞ of a
squash ball on a conveyor belt, at moderate velocities. The setup
was designed to fill an identified gap in the availability of accessi-
ble methods to perform rolling resistance experiments involving
deformable spheres. It was later used in a classroom for teaching
purposes. The different sources of power dissipation contributing
to rolling resistance cannot be clearly distinguished using the pro-
posed device. Indeed, energy losses occur not only in the bulk of
the sphere, but also to some extent in the bulk of the deformable
conveyor belt, and at the contact interface in case of slipping fric-
tion as well. Nevertheless, the experimental results presented by
the authors, for the combined losses, confirm the linear depen-
dence of the coefficient of rolling friction on the translational
velocity Vs, at moderate rates of motion.

More recently, Zheng et al. (2011) implement using the com-
mercial software ABAQUS, a finite element (FE) model for the stea-
dy-state rolling resistance of a solid viscoelastic sphere on a rigid
plane, under the quasi-static approximation. The material’s behav-
ior is characterized as in the work of Brilliantov and Pöschel (1998),
with the additional assumption that the viscous parameter associ-
ated with the bulk modulus is equal to zero, which in fact corre-
sponds to the three-dimensional formulation of the material
behavior retained by Yung and Xu (2003). The FE model’s imple-
mentation is focused on the regime where Xsk � 1, which corre-
sponds to the elastic part of the contact stress field being much
larger than the viscous part, but also to small values of rolling
resistance. To avoid that the resisting toque be affected by numer-
ical errors on re, the authors override the finite element software
to compute the resisting torque from rv only, hence neglecting
the contribution of re. The numerical model is exploited in the con-
ditions corresponding to Xsk � d=R and to d=R� 1. In this regime,
the coefficient of rolling friction, defined as Tr=ðPRÞ, is found to be
almost independent from the vertical load P applied to the sphere,
and to vary linearly with the rolling speed X. The authors also de-
rive an analytical expression for rolling friction, based on the
assumptions retained by Brilliantov and Pöschel (1998), which
matches the results of their numerical model fairly well.

It is interesting to note that, in the papers discussed above,
either (i) a simplified formulation is retained which does not
involve a rolling contact problem, or (ii) a more sophisticated
numerical approach is adopted, but the resolution of contact is car-
ried out by means of a commercially available tool, with minimal
discussion.

To date, no work has ever addressed the modeling (and the
solving) of the resistance incurred by a rigid sphere, covered with
a viscoelastic coating, rolling or sliding, on a rigid plane. In this
work, we present a novel three-dimensional boundary-element
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