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a b s t r a c t

In this paper, a new analytic criterion for porous solids with matrix obeying Tresca yield criterion is
derived. The criterion is micromechanically motivated and relies on rigorous upscaling theorems. Anal-
ysis is conducted for both tensile and compressive axisymmetric loading scenarios and spherical void
geometry. Finite element cell calculations are also performed for various triaxialities. Both the new model
and the numerical calculations reveal a very specific coupling between the mean stress and the third
invariant of the stress deviator that results in the yield surface being centro-symmetric and void growth
being dependent on the third-invariant of the stress deviator. Furthermore, it is verified that the classical
Gurson’s criterion is an upper bound of the new criterion with Tresca matrix.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Significant progress has been made in understanding and mod-
eling the micromechanics of ductile fracture in porous polycrystal-
line metallic materials. Most of the available theories of
dilatational plasticity and viscoplasticity make use of the assump-
tion that the matrix (void-free material) is described by the von
Mises yield criterion. This is the case, for example, of the classical
Gurson (1977) model and its various extensions proposed by
Tvergaard (1981), Tvergaard and Needleman (1984), Gologanu
et al. (1993), Monchiet et al. (2011) among others. In particular,
the modified Gurson model, known as Gurson–Tvergaard–Needle-
man (GTN) model reproduces qualitatively the essential features of
tensile fracture of axisymmetric specimens (e.g. Tvergaard and
Needleman, 1984; Koplik and Needleman, 1988). All the above
models involve dependence only with the mean stress and the
von Mises effective stress. However, theoretical studies have re-
vealed that triaxiality alone is insufficient to characterize impor-
tant growth and coalescence features even for axisymmetric
stress states (e.g. Ponte Castañeda and Suquet, 1998 for weakly
contrasted materials, Danas et al., 2008, who applied the second-
order method of Ponte Castaneda, 2002 to the case of a porous
von Mises material). Further evidence of combined effects of the
mean stress and third invariant on yielding of porous solids with
von Mises matrix were also provided using finite-element (FE) cell
calculations (e.g. Cazacu and Stewart, 2009; Julien et al., 2011;
Thore et al., 2011, etc.). Very recently, Cazacu et al. (2013) devel-

oped an analytic yield criterion that captures the aforementioned
trends under axisymmetric stress states, namely the centro-sym-
metry of the yield surface and the role of the sign of the third-
invariant on the rate of void growth (see Alves et al., 2013).

As concerns the ductile response of porous metals under shear
dominated loadings (at low triaxialities), in the past couple of
years, growing experimental evidence has shown the role played
by all stress invariants. In particular, the influence of the Lode
parameter has been well documented (e.g. recent data reported
by Bao and Wierzbicki (2004), Barsoun and Faleskog (2007), Hal-
tom et al. (2013) and Lou and Huh (2013), etc.). This dependence
has also been investigated from theoretical /computational stand-
points (e.g. Nashon and Hutchinson, 2008; Tvergaard, 2009; Tverg-
aard and Nielsen, 2010; Stoughton and Yoon, 2011, etc.).

Since in all the above studies, the fully-dense material is de-
scribed by the von Mises yield criterion, the effects of the third-
invariant of the stress deviator on the dilatational response of
the porous solid are due solely to the presence of voids. Cazacu
and Stewart (2009) developed an analytical potential for porous
solids for which the matrix is incompressible but displays ten-
sion–compression asymmetry (e.g. hcp porous solids). Specifically,
the yield criterion used for the matrix is an odd function of the
stress deviator and involves dependence on its two invariants. It
was shown that the yield surface of the porous solid does not dis-
play any symmetries with respect to the deviatoric and hydrostatic
axes, respectively (see also Lebensohn and Cazacu, 2012).

In this paper, the main focus is on investigating the dilatational
response of porous solids with matrix governed by Tresca’s yield
criterion, which is an even function of the stress deviator and in-
volves both invariants. Such a study is also of interest in view of
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engineering applications, given that for certain fully-dense metallic
materials Tresca yield criterion describes better the plastic re-
sponse than von Mises criterion (e.g. annealed aluminum data re-
ported by Vial-Edwards (1997); for a historical survey on early
experimental work on mild steel tubes subjected to complex load-
ing paths such as torsion and bending, torsion–compression, and
torsion–tension tests the readers are referred to Michno and Find-
ley (1976)). The maximum shear stress criterion of Tresca is also
considered to be more physically-motivated because it is an isotro-
pic form of the Schmid law describing slip at single-crystal level
(for example, see Hughes, 1984). However, for most untextured
metallic materials the yield locus is between that of Tresca’s and
von Mises (e.g. see Drucker, 1949) with von Mises criterion usually
found more accurate, and this is why it is mostly applied.

Tresca’s yield criterion postulates that in an isotropic metallic
material the onset of plastic deformation occurs when the maxi-
mum shear stress over all planes in the material reaches a certain
critical value. This criterion is generally represented as:

uðrÞ ¼ rT ;

with

uðrÞ ¼maxðjr1 � r2j; jr2 � r3j; jr1 � r3jÞ: ð1Þ

In Eq. (1), r1, r2, and r3, are the principal values of the Cauchy
stress tensor, r, and rT is the uniaxial yield in tension (see Lubliner,
2008). It may alternatively be written in terms of the invariants of
the Cauchy stress deviator, r0, defined as: r0 ¼ r� rmI; with I
being the 2nd order identity tensor and rm = tr(r)/
3 = (r1 + r2 + r3)/3 denoting the mean stress. Since isotropy dic-
tates three fold symmetry of the yield surface, it is sufficient to give
the expression of Tresca’s criterion for stress states corresponding
to the sextant r1 P r2 P r3, i.e.

r1 � r3 ¼ rT ;

or, equivalently

2
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In the above equation, b is the Lode angle satisfying 0 6 b 6 p=3
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while J2 and J3 are the second

and third invariants of the stress deviator r0 (see also Malvern,
1969).

Since Tresca’s criterion involves both the second and third-
invariants of the Cauchy stress deviator (see Eq. (2)), yielding, plas-
tic flow, and strength of a porous polycrystal containing randomly
distributed spherical voids in a matrix governed by Tresca’s crite-
rion ought to incorporate all three invariants of stress. One of the
major objectives of this paper is to derive such an yield criterion
using rigorous limit-analysis theorems.

It is to be noted that a major difficulty in deriving such a crite-
rion in closed-form is related to the calculation of the overall plas-
tic dissipation. This is a direct consequence of Tresca’s criterion
involving a dependence on the third invariant of the stress devia-
tor. Indeed, in contrast with the case when the matrix is described
by the von Mises criterion, mathematical difficulties arise in the
analysis because the expression of the local plastic dissipation de-
pends on the sign of each of the principal values of the local strain
rate tensor. It is shown that, despite these fresh difficulties associ-
ated with the calculation of the local plastic dissipation, all the
integrals representing the overall plastic dissipation can be calcu-
lated analytically. The main result of this work, an explicit para-
metric representation of the yield surface for porous solids with
randomly distributed spherical voids in a Tresca matrix is pre-
sented in Section 2.2. New and unexpected results are revealed;
namely, that yielding of a porous solid with Tresca matrix should

involve a very specific coupling between the mean stress and the
third-invariant of the stress deviator. It is worth noting that this
coupling is not postulated but it results from the analysis, which
is based on rigorous upscaling techniques Moreover, axisymmetric
finite-element (FE) cell calculations are conducted in order to gen-
erate numerical yield surfaces for a porous material with matrix’s
response described by Tresca yield criterion (Section 3). These
numerical results also reveal the same coupling between the mean
stress and the third invariant, which induces a lack of symmetry of
the yield surface for stress-triaxialities different from 0 and ±1.
Currently, when calculating the effective response of porous solids
with von Mises matrix, coupling between deviatoric and mean
stress effects are neglected. In Section 4, we examine the conse-
quences of adopting this approximation in the case of a Tresca ma-
trix. The results obtained show that it amounts to erasing the
specificities of the plastic flow of the matrix.

2. Derivation of the analytic yield criterion

2.1. Kinematic homogenization approach

We begin by briefly presenting the kinematic homogenization
approach based on Hill–Mandel (Hill, 1967; Mandel, 1972) lemma
that will be used to derive the closed-form expressions for the
yield criterion of a porous solid with matrix obeying Tresca’s crite-
rion. Let X denote a representative volume element composed of a
homogeneous rigid-plastic matrix and a traction-free void. If the
matrix material is described by a convex yield function u(r) in
the stress space and an associated flow rule:

d ¼ _k
@u
@r

: ð3Þ

The plastic dissipation potential of the matrix is then defined
as

pðdÞ ¼ sup
r2C
ðr : dÞ: ð4Þ

In the above equations, r is the Cauchy stress tensor,
d ¼ ðrv þrvTÞ=2 is the strain rate tensor with v being the veloc-
ity field; ‘‘:’’ denotes the double-contracted product of the two ten-
sors, _k P 0 is the plastic multiplier rate while C denotes the convex
domain delimited by the yield surface, i.e.

C ¼ frjuðrÞ 6 0g:

For uniform strain rate boundary conditions on @X such that

v ¼ D � x; for any x 2 @X; ð5Þ

with D the overall strain rate tensor, Hill–Mandel (Hill, 1967;
Mandel, 1972) lemma applies:

hr : diX ¼ R : D; ð6Þ

In the above equation, h i denotes the average value over the
representative volume X, D is the overall strain rate tensor, and
R ¼ hriX. Moreover, there exists a macroscopic strain rate potential
P ¼ PðDÞ, where

PðDÞ ¼ inf
d2KðDÞ

hpðdÞiX and R ¼ @PðDÞ
@D

ð7Þ

(for more details, see Talbot and Willis, 1985). In Eq. (7), K(D) de-
notes the set of incompressible velocity fields satisfying condition
(5) (for more details, see for example, Michel and Suquet, 1992;
Leblond, 2003; Garajeu and Suquet, 1997). This lemma will be
further used to derive the plastic potential of a porous solid, with
rigid-plastic matrix obeying Tresca yield function (i.e. u(r) given
by Eq. (1)). Since u(r) is homogeneous of degree one in stresses,
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