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a b s t r a c t

Recently, a very general and novel class of implicit bodies has been developed to describe the elastic
response of solids. It contains as a special subclass the classical Cauchy and Green elastic bodies. Within
the class of such bodies, one can obtain through a rigorous approximation, constitutive relations for the
linearized strain as a nonlinear function of the stress. Such an approximation is not possible within clas-
sical theories of Cauchy and Green elasticity, where the process of linearization will only lead to the clas-
sical linearized elastic body.

In this paper, we study numerically the states of stress and strain in a finite rectangular plate with an
elliptic hole and a stepped flat tension bar with shoulder fillets, within the context of the new class of
models for elastic bodies that guarantees that the linearized strain would stay bounded and limited
below a value that can be fixed a priori, thereby guaranteeing the validity of the use of the model. This
is in contrast to the classical linearized elastic model, wherein the strains can become large enough in
the body leading to an obvious inconsistency.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, a new class of implicit constitutive relations was
introduced to describe the response of elastic bodies (see Rajag-
opal, 2003, 2007, 2011b, Rajagopal and Srinivasa, 2007, 2009 and
Bustamante, 2009). This new class includes the explicit theories
of Cauchy elasticity and Green elasticity as special subclasses.
The advantages that such models provide over the classical models
are detailed in several papers (Rajagopal, 2011b,a; Bustamante and
Rajagopal, 2010) and hence we shall not repeat them here. Suffice
it is to say that very important problems such as the problem of
fracture, which has defied a proper consistent explanation without
resorting to ad hoc procedures (see Rajagopal and Walton, 2011,
Kulvait et al., 2013, Ortiz et al., 2012, and Bulíc̆ek et al., 2013 with
regard to how the problem is dealt within the context of the new
class of models) and the modeling of certain phenomena exhibited
by soft material that has hitherto defied explanation within the
context of classical models (see the discussion in Freed and
Einstein (2013a,b); Freed et al., 2013) are some examples of the
potential of the new class of implicit constitutive relations. The
class of implicit models has also been extended to develop models
to describe the electroelastic response of bodies and it has been
able to describe phenomena that have thus far been impossible

to explain within the context of classical electroelastic theories
(see Bustamante and Rajagopal, 2013b,a).

Another special subclass of the implicit models for elasticity
introduced by Rajagopal (2003) is explicit models for the stretch
in terms of the stress (see Rajagopal, 2007, 2011b) and its lineari-
zation that leads to an explicit nonlinear expression for the linear-
ized strain in terms of the stress. The latter class of models is
impossible within the context of classical theories of elasticity
and this paper is concerned with a study of such models (see the
model defined through (15)). When one is concerned with consti-
tutive relations for the Cauchy–Green stretch or the linearized
strain in terms of the stress, one does not have the luxury of substi-
tuting the expression for the stress in terms of the displacement
gradient into the balance of linear momentum and obtaining a
partial differential equation for the displacement field. Instead,
the constitutive relation, the balance of linear momentum, and
whatever other balance laws are relevant, need to be solved simul-
taneously; hence the stress and displacement fields are both un-
knowns that need to be solved for. This system of coupled
nonlinear partial differential equations is far more daunting than
the much simplified system that is obtained when an explicit
expression for the stress in terms of the displacement gradient
can be substituted into the balance of linear momentum. In this
study, we are concerned with an explicit expression for the linear-
ized strain in terms of the stress and hence concerned with the
more complex system of coupled partial differential equations.
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Though the system is complicated in that the number of equations
to be solved is larger, the order of the equations within the purview
of the new framework is a system of lower order equations and
thus from the point of view of numerical analysis provides some
advantages.

Most of the studies until recently have been concerned with
special boundary value problems, in infinite domains, wherein
semi-inverse assumptions are made to reduce the problem to the
study of much simplified governing equations, which in most in-
stances is a system of ordinary differential equations. In this paper,
we shall study problems in finite domains and as it is unlikely that
we can simplify the problem to obtain simpler ordinary differential
equations, we shall have to study the problem numerically. We
will study two problems, that of the stress concentration due to
the presence of an elliptic hole and that of the stress concentration
in a stepped flat tension bar with shoulder fillets, within the con-
text of the new class of models. The first of the two problems
has relevance to the problem of stress concentration due to a crack
as such a situation can be achieved by taking the limit of the ratio
of the minor axis to the major axis of the elliptic hole to tend to
zero.

The organization of the paper is as follows. In Section 2, we
introduce the basic kinematics, document the general implicit con-
stitutive relation between the stress and the stretch for isotropic
bodies, and derive a special constitutive relation for the linearized
strain in terms of the stress under the assumption that the dis-
placement gradient is small. We then record some special constitu-
tive expressions for the linearized strain in terms of the stress and
develop the system of governing equations that need to be solved.
In Section 3, the necessary weak and linearized weak forms are
presented and the linearized weak form is discretized using the fi-
nite element method. The computational method and algorithms
are discussed in Section 4. Finally, Section 5 is devoted to a discus-
sion of the numerical results. In the case of the problem of a plate
with an elliptic hole subjected to tension with the applied tension
being perpendicular to the major axis, we find (as is to be ex-
pected) that the strains are maximum at the vertices along the ma-
jor axis; however they remain bounded below the value for which
the linearization is valid even as the stress increases. In the case of
the stepped flat tension bar with shoulder fillets, the strain is max-
imum at the shoulder but once again remains below the value that
guarantees the validity of the linearization.

Unlike the classical linearized model which leads to ever
increasing strains that make the model that is being used invalid,
the current study is a consistent approach that guarantees that
the model that is being used is applicable throughout the domain
of application of the model. This fact cannot be overemphasized.

2. Basic equations

2.1. Kinematics

Let X 2 B denote a point in an abstract body B and X ¼ jðXÞ the
position of X in the reference configuration jrðBÞ; we assume there
exists a one-to-one function v referred to as the motion of the body
such that x ¼ vðX; tÞ, where x is the position of X in the current
configuration jtðBÞ at time t.

The deformation gradient F and the right and the left Cauchy–
Green strain tensors, C and B, are defined as

F ¼ @x
@X

; C ¼ FTF; B ¼ FFT; ð1Þ

respectively. The displacement field u is defined through

u ¼ x� X: ð2Þ

Finally, the Green–St. Venant strain (E) and the linearized strain (e)
are defined through

E ¼ 1
2
ðFTF� IÞ; e ¼ 1

2
½ruþ ðruÞT�: ð3Þ

In this work, we consider the case kruk � OðdÞ with d� 1 and
thus the relevant strain measure is the linearized strain. Hence, the
current and the reference configuration are coincident.

2.2. Equilibrium equation and constitutive relations

In this paper, we study quasi-static problems in the absence of
body forces. The equilibrium equation in terms of the Cauchy
stress tensor r is

divr ¼ 0: ð4Þ

For elastic bodies, Rajagopal (2003, 2007) proposed an implicit con-
stitutive relation of the form

f ðB;r;qÞ ¼ 0; ð5Þ

where q is the density of the body. For isotropic bodies, (5) becomes

a0Iþ a1Bþ a2B2 þ a3rþ a4r
2 þ a5ðBrþ rBÞ þ a6ðBr2 þ r2BÞ

þ a7ðB2rþ rB2Þ þ a8ðB2r2 þ r2B2Þ ¼ 0; ð6Þ

where ai (i ¼ 0;1;2; . . . ;8) are scalar functions that depend on the
invariants

trB; trB2; trB3; trr; trr2; trr3; trðBrÞ; trðB2rÞ; trðr2BÞ; trðB2r2Þ;

and the density q. For kruk � OðdÞ with d� 1,

B � Iþ 2e: ð7Þ

On the other hand, using a Taylor expansion in Cartesian coordi-
nates around e ¼ 0 and assuming that ai (i ¼ 0;1;2; . . . ;8) does
not depend explicitly on q, the following approximation holds:

aiðr;BÞ � aiðr; Iþ 2eÞ � aiðrÞ þ
@ai

@ekl

����
ðr;e¼0Þ

e ði ¼ 0;1; . . . ;8Þ: ð8Þ

On substituting (7) and (8) into (6), the following implicit relation is
obtained for terms up to order d:

@0Iþ @1eþ @2rþ @3r
2 þ @4erþ @5reþ @6er2 þ @7r

2e

þ ði0kl
eklÞIþ ði1kl

eklÞrþ ði2kl
eklÞr2 ¼ 0; ð9Þ

where @m ¼ @mðrÞ (m ¼ 0;1; . . . ;7) and inkl
¼ inkl

ðrÞ (n ¼ 0;1;2)
are (in general) nonlinear scalar and tensor functions of the Cauchy
stress tensor r. Under certain conditions, (9) can be solved for e. A
simple method to find such conditions is the following. On defining
the vector � ¼ e11; e22; e33;2e12;2e13;2e23ð ÞT, (9) can be written as the
vector equation

M� ¼ d; ð10Þ

where the matrix M ¼ M6�6 and the vector d ¼ d6�1 depend (in gen-
eral nonlinearly) on r. For brevity, the explicit form of M is not
shown here. If det M – 0, then � ¼ M�1d can be computed. For
isotropic bodies, (5) can be used to obtain the nonlinear relation
(Bustamante and Rajagopal, 2010; Bustamante, 2009)

e ¼ gðrÞ: ð11Þ

For an isotropic body that is described by the classical linearized
constitutive relation, the function gðrÞ is

gðrÞ ¼ 1
E
r� m

E
ðtrrÞI; ð12Þ
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