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a b s t r a c t

This paper presents a modified interaction energy integral method to analyze the thermal stress intensity
factors (TSIFs) and electric displacement intensity factor (EDIF) in nonhomogeneous piezoelectric mate-
rials under thermal loading. This modified method is demonstrated to be domain-independent, even
when the nonhomogeneous piezoelectric materials contain interfaces with thermo-electro-mechanical
properties. As a result, the method is shown to be convenient for determining the TSIFs and EDIF in non-
homogeneous piezoelectric materials with interfaces. Several examples are shown, and they successfully
verify the domain-independence of the present interaction energy integral. The study results also show
that the mismatch of material properties can significantly influence the TSIFs and EDIF, particularly when
the crack tip is close to the interface. Crack angles and temperature boundary conditions are also shown
to significantly influence the TSIFs and EDIF.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials, which can be used in sensors, ultra-
sonic transducers, and piezoelectric motors, have attracted the
attention of many researchers (Sosa, 1992; Suo et al., 1992).
The piezoelectric effect is identified as the reversible interaction
between a mechanical stress and an electric voltage in such a
material, i.e., an applied mechanical stress generates a voltage,
and an applied voltage changes the shape of the material. In pie-
zoelectric materials, fracture is an important failure mode (Rao
and Sunar, 1993). Further understanding of the fracture mecha-
nism in piezoelectrics will contribute to better applications of
these materials.

Many researchers have studied the fracture problems in piezo-
electric materials under mechanical loading and thermal loading
conditions. Sosa (1992) deduced asymptotic expressions for the
electromechanical fields in the vicinity of the crack and studied
the effects of the electric field on crack arrest and crack skewing
in two-dimensional piezoelectric materials. Zhang et al. (2002)
and Zhang and Gao (2004) presented the theoretical analyzes
and experimental observations of the failure and fracture behav-
ior of piezoelectric materials. Ueda (2007a,b, 2008) obtained the
thermal stress intensity factors (TSIFs) and electric displacement
intensity factor (EDIF) in a functionally graded piezoelectric strip
by solving a series of singular integral equations. Wang and Mai

(2002, 2003) and Wang and Noda (2001) studied the fracture
problems in piezoelectric materials under steady state thermal
loading and thermal shock loading. Kuna (2006) and Kuna and
Ricoeur (2008) defined a thermo-electro-mechanical J-integral
and studied the thermal crack problems in smart structures.
Rao and Kuna (2010) obtained the stress intensity factors (SIFs)
and EDIF using interaction integrals in functionally graded piezo-
electric materials subjected to thermal loading. However, the
authors did not consider a situation in which the piezoelectric
materials contain interfaces. Rao (2009) and Rao and Kuna
(2008) also studied the fracture problems in functionally graded
magneto-electro-elastic materials subjected to mechanical load-
ing using the domain form of interaction integrals. Yu et al.
(2012) used interaction integrals to solve the SIFs and EDIF of pie-
zoelectric materials with complex interfaces. The investigators
proved that the interaction integral formulation does not involve
any derivatives of mechanical and electric properties. However,
they did not consider the thermal fracture problems of the piezo-
electric materials.

Although many publications present studies of the mechanical
and thermal fracture problems of piezoelectric materials, essen-
tially no reports of thermal fracture problems have been given
when the integral domain in piezoelectric material contains inter-
faces. Hence, in this paper, we aim to develop a modified interac-
tion energy integral method that can be used to obtain the
fracture parameters in nonhomogeneous piezoelectric materials
with interfaces and to study the effects of material discontinuities
on the TSIFs and EDIF.
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2. The basic equations for piezoelectric materials under thermal
loading

In this section, first, the temperature field for the thermal frac-
ture problem in piezoelectric materials is determined. Then, the
governing equations for a piezoelectric media subjected to thermal
loading in the absence of body forces, electric charges, and heat
sources are presented.

The temperature field is assumed to satisfy the 2-D steady
Fourier heat conduction equation,

kx
@2T
@x2 þ ky

@2T
@y2 ¼ 0; ð1Þ

where kx and ky are the thermal conductivities along the x-axis and
y-axis. As shown in Fig. 1, the applied boundary conditions are

Tjð06y6L;x¼0Þ ¼ T1; Tjð06y6L;x¼WÞ ¼ T2;
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In the Finite Element Method (FEM), the temperature distribu-
tion in an element can be expressed as

Teðx; yÞ ¼ NTe ¼
Xm

i¼1

NiTi; ð3Þ

where N is the shape function in which the ith component is Ni and
Te is the node temperature in which the ith component is Ti. In this
paper, m = 4 denotes that a 4-node element is adopted. The integra-
tion of the Fourier heat conduction equation leads toZ
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The equation for the temperature of the element can be written
as

½Ke�fTeg ¼ 0; ð5Þ

where the heat conductance matrix of the element, given as Ke, is

½Ke� ¼
Z
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" #
dxdy: ð6Þ

The assembly of the temperature equations of every element
leads to the global temperature equations group

½K�fTg ¼ ffg; ð7Þ

where [K] is the global stiffness matrix, {T} is the vector of nodal
temperature, and {f} is the vector of the corresponding element
force. Using Eq. (7) and the temperature boundary conditions, the
temperature field can be calculated.

The governing equations for a piezoelectric medium subjected
to thermal loading in the absence of body forces, electric charges,
and heat sources are given below.

The constitutive equations for the piezoelectric material are

rij ¼ Cijklekl � elijEl � kijDT

Di ¼ eiklekl þ jilEl � viDT
ði; j; k; l ¼ 1;2;3Þ; ð8Þ

the kinematic equations are

eij ¼
1
2
ðui;j1 þ uj;i1Þ; Ei ¼ �/;i; ð9Þ

and the equilibrium equations are

rij;j ¼ 0; bDi;i ¼ 0; hi;i ¼ 0; ð10Þ

where hi = � kijDT, hi and kij are the heat flux and the coefficients of
heat conduction, respectively. Additionally, DT is the difference of
the absolute temperature between the temperature and the
stress-free reference temperature T0. In Eqs. (8)–(10), a comma de-
notes partial differentiation, and the repeated indices denote sum-
mation; ui, rij, /, Di, and Ei are the elastic displacements, stresses,
the electric potential, electric displacements, and the electric field,
respectively; Cijkl, elij, jil are the elastic stiffness, piezoelectric con-
stants, and dielectric permittivity, respectively.

In Eq. (8), the temperature stress coefficients kij and the pyro-
electric displacement constants vi, which are related to the tensors
of the thermal expansion coefficients akl and the pyroelectric field
constants gl, are shown below:

kij ¼ Cijklakl � elijgl;

vi ¼ eiklakl þ jilgl:
ð11Þ

We define em
kl and Em

l , which are the electromechanical parts of
the total strain et

kl and the total electric field Et
l , as

em
kl ¼ et

kl � eth
kl ¼ et

kl � aklDT;

Em
l ¼ Et

l þ Eth
l ¼ Et

l þ glDT;
ð12Þ

where eth
kl and Eth

l are the thermo-electro-mechanical components of
strain and the electric field, respectively.

According to Eq. (12), the constitutive equations can be simpli-
fied as

rij ¼ Cijklem
kl � elijE

m
l ;

Di ¼ eiklem
kl þ jilE

m
l :

ð13Þ

According to Hwu (2008), Eq. (13) is equivalent to the following
set of equations:

em
ij ¼ Sijklrkl þ gkijDk;

Em
i ¼ �giklrkl þ bikDk:

ð14Þ

Using the relationship between the indices 11 ? 1, 22 ? 2,
33 ? 3, 23 ? 4, 31 ? 5, 12 ? 6, Eq. (13) can be written in Voigt
notation as

ra ¼ Cabem
b � esaEm

s ;

Di ¼ eibem
b þ jisE

m
s ;

ð15Þ

where a;b ¼ 1; . . . ;6 and i, s = 1, 2, 3.
For convenience, we define a generalized matrix Cek for the

plane strain state as
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Fig. 1. An edge crack in a nonhomogeneous piezoelectric plate containing an
interface.
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