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a b s t r a c t

This work aims at estimating the size-dependent effective elastic moduli of particulate composites in
which both the interfacial displacement and traction discontinuities occur. To this end, the interfacial dis-
continuity relations derived from the replacement of a thin uniform interphase layer between two dis-
similar materials by an imperfect interface are reformulated so as to considerably simplify the
characteristic expressions of a general elastic imperfect model which is adopted in the present work
and include the widely used Gurtin–Murdoch and spring-layer interface models as particular cases.
The elastic fields in an infinite body made of a matrix containing an imperfectly bonded spherical particle
and subjected to arbitrary remote uniform strain boundary conditions are then provided in an exact,
coordinate-free and compact way. With the aid of these results, the elastic properties of a perfectly
bonded spherical particle energetically equivalent to an imperfectly bonded one in an infinite matrix
are determined. The estimates for the effective bulk and shear moduli of isotropic particulate composites
are finally obtained by using the generalized self-consistent scheme and discussed through numerical
examples.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the mechanics of heterogeneous or composite materials, the
interface between two constituent phases is said to be perfect if
and only if both the displacement and traction vectors are continu-
ous across it. Otherwise, it is qualified as being imperfect. An imper-
fect interface is further referred to as being linear or nonlinear
according as the relations describing its displacement and traction
discontinuities are linear or nonlinear. The situations in which linear
or nonlinear imperfect interfaces occur and have to be taken into ac-
count are numerous in the mechanics of composites. For example,
two constituent phases may be not firmly bonded together or the
interface between two dissimilar phases may exhibit non negligible
surface energy excess. The present work aims at estimating the size-
dependent effective elastic moduli of particulate composites in
which both the interfacial displacement and traction discontinuities
are present and characterized by linear elastic relations.

Although a great number of works have been dedicated to
accounting for the effects of linear imperfect interfaces on the

effective elastic moduli of composites (see, e.g., Benveniste, 1985;
Brisard et al., 2010; Chen and Dvorak, 2006; Chen et al., 2007;
Duan et al., 2005a,b, 2007a,b, 2009; Hashin, 1990, 1991, 1992;
Javili et al., 2013; Kushch et al., 2011; Quang and He, 2007, 2008,
2009; Sharma and Ganti, 2004), the interfacial models which have
been used are almost exclusively limited to the spring-layer model
and the Gurtin–Murdoch model. In the former, the traction vector
is continuous across an interface while the displacement vector
presents an interfacial jump linearly related to the traction vector.
In the latter, the displacement vector is continuous across an inter-
face while the traction vector suffers an interfacial jump which
must satisfy the Young–Laplace equation where the surface stress
tensor intervenes and is related linearly to the surface strain ten-
sor. However, it is known (see, e.g., Hashin, 2002, 2006, 2008) that
the spring-layer and Gurtin–Murdoch interface models are in-
cluded in a general elastic imperfect interface model. Precisely,
by making an asymptotic analysis for an interphase of small uni-
form thickness between two phases with the purpose of replacing
the interphase by an imperfect interface of null thickness, the dis-
placement and traction jump relations governing the imperfect
interface can be deduced and characterize a general elastic imper-
fect interface model. According as the interphase is much softer or
stiffer than the neighboring phases, the general interface model re-
duces to the spring-layer or Gurtin–Murdoch interface model.
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Thus, the general interface model has the advantage of covering
not only the spring-layer and Gurtin–Murdoch interface models
as two particular extreme cases but also the intermediate cases be-
tween them.

In the present work, the general elastic imperfect interface
model described above is adopted in order to account for the ef-
fects of imperfect interfaces on the effective elastic moduli of par-
ticulate composites. The interfacial displacement and traction
jump relations characterizing that model are reformulated in such
a way that they take simpler compact but equivalent forms partic-
ularly convenient for later use. The important problem of deter-
mining the elastic fields in an infinite body made of a matrix
containing an imperfectly bonded spherical particle and subjected
to arbitrary remote uniform strain boundary conditions is then
solved in an analytically exact and coordinate-free way. The results
obtained for this problem make it possible to directly apply any
appropriate micromechanical scheme for estimating the size-
dependent effective elastic moduli of particulate composites. In
the present work, the method proposed by Duan et al. (2007a),
which consists in replacing an imperfectly bonded spherical parti-
cle by a perfectly bonded equivalent one in an infinite matrix, is
used together with the generalized self-consistent scheme.

Owing to the generality and versatility of the interface model
adopted, the elastic fields obtained in the present work for an infi-
nite matrix with an imperfectly bonded spherical particle are new
and allows us to retrieve the relevant elastic fields reported in the
literature when the spring-layer or Gurtin–Murdoch is employed
(see, e.g., Hashin, 1991; Zhong and Meguid, 1997; Sharma and
Ganti, 2004; Duan et al., 2007a). In addition, the expressions for
the elastic fields are given in a coordinate-free way and hold for
any remote uniform strain boundary conditions. The results pre-
sented for the effective bulk and shear moduli of a composite with
imperfectly bonded spherical particles are also new and include as
particular cases the corresponding results given in the literature
when the spring-layer or Gurtin–Murdoch is used. Thus, the pres-
ent work unifies and extends: (i) the results in the literature for the
elastic fields in an infinite elastic isotropic body with an imper-
fectly bonded elastic isotropic spherical particle; (ii) those in the
literature for the size-dependent elastic effective bulk and shear
moduli of isotropic particulate composites with imperfectly
bonded spherical particles.

The rest of the paper is structured as follows. In the next sec-
tion, the physical background and general expressions of the gen-
eral elastic imperfect interface model are recalled in the totally
anisotropic case. The interfacial displacement and traction rela-
tions are reformulated so as to take compact and simple forms.
They are particularized to the isotropic case and shown to in-
clude as particular cases the spring-layer and Gurtin–Murdoch
interface models. In Section 3, the elastic displacement, strain
and stress fields in an infinite isotropic matrix containing an
imperfectly bonded isotropic spherical particle are derived first
for a remote uniform isotropic strain boundary condition, then
for a remote uniform shear strain boundary condition and finally
for any remote uniform strain boundary condition. It is also
shown how to find the corresponding particular results when
the spring-layer or Gurtin–Murdoch interface model is used. In
section 4, the replacement procedure of Duan et al. (2007a)
and the corresponding energy equivalency condition are first re-
called. The elastic properties of an equivalent spherical particle
are then deduced in the case where the general imperfect inter-
face model is used. The effective bulk and shear moduli of an iso-
tropic composite with imperfectly bonded spherical particles are
finally estimated by the generalized self-consistent method. In
section 5, numerical examples are given to illustrate some results
and make discussions on them. In Section 6, a few concluding
remarks are drawn.

2. Interface models

The composite under consideration consists of a matrix in
which particulate inhomogeneities are embedded via imperfect
interfaces. Let X be the 3D domain occupied by a representative
volume element (RVE) of the composite. The boundary of X is sym-
bolized by @X. The subdomains of X inhabited by a typical inhomo-
geneity and the matrix are denoted by X 1ð Þ and X 2ð Þ, respectively.
The interface between X 1ð Þ and X 2ð Þ is designed by C with the unit
normal vector n oriented from X 1ð Þ to X 2ð Þ. The materials forming
X 1ð Þ and X 2ð Þ are assumed to be individually homogeneous and lin-
early elastic. Their constitutive behaviour is characterized by
Hooke’s law

r ¼ Le or e ¼Mr; ð1Þ

where r and e stand for the Cauchy stress and infinitesimal strain
tensors; L and M are the fourth-order elastic stiffness and compli-
ance tensors. As usual, L and M have the minor and major symme-
tries and are positive definite. The infinitesimal strain tensor e is
related to the displacement vector u by

e ¼ 1
2
ruþ ruð ÞT
h i

: ð2Þ

The general elastic interface model initially proposed by Bövik (1994)
and Hashin (2002) and then extended by Benveniste (2006) and Gu
and He (2011) will be used to describe the interface C between X 1ð Þ

and X 2ð Þ. Now, we recall the physical background of this model and
reformulate it in an equivalent but more convenient form.

2.1. General anisotropic interface model

The interface model in question is based on a physically mean-
ingful three-phase configuration (Fig. 1(a)) where an interphases

Xð0Þ of small uniform thickness h is located between a matrix X̂ð2Þ

and a particulate inhomogeneity X̂ð1Þ. The interface S1 between

X̂ð1Þ and Xð0Þ, and the one S2 between X̂ð2Þ and Xð0Þ, are both as-
sumed to be perfect. In the two-phase one (Fig. 1(b)) the interphase
is eliminated and replaced by a zero-thickness imperfect interface
located at the middle surface C of the interphase, while the neigh-

boring phases X̂ð1Þ and X̂ð2Þ are extended to C so as to become

X 1ð Þ and X 2ð Þ, respectively. Requiring that the jumps of the dis-
placement vector u and the traction vector t across the interphase

X 0ð Þ in the three-phase configuration (Fig. 1(a)) be, to within an

error of order 0 h2
� �

, equal to the corresponding ones across the

zone bounded by the surfaces S1 and S2 in the two-phase one
(Fig. 1(b)), the jump conditions that the imperfect interface C in
the two-phase configuration must satisfy can be derived. These
interfacial jump conditions characterize the general elastic
interface model to be used in the present work.

(a) (b)
Fig. 1. Replacement of an interphase by an imperfect interface: (a) matrix/
interphase/particle configuration; (b) matrix/imperfect interface/particle
configuration.
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