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a b s t r a c t

A microscopically damaged interface between two elastic half-spaces under anti-plane deformations is
modeled using randomly distributed interfacial micro-cracks. The micro-crack length is a continuous
random variable following a given probability distribution. The micromechanical-statistical model of
the interface, formulated and solved in terms of hypersingular integral equations, is used to estimate
the effective stiffness of the interface. The number of micro-cracks per period length of the interface
required to homogenize the effective interface stiffness is examined. Also investigated are the effects
of the micro-crack length and the crack-tip gap between two neighboring micro-cracks on the effective
stiffness.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Micro-roughness of surfaces (Hamidi et al., 2004) or thermally
induced residual stresses during manufacturing processes (Nix,
1989) may give rise to microscopic voids and defects in the
interface between two solids which are otherwise perfectly
bonded. As illustrated in Fig. 1, for macro-scale analyses, a
microscopically damaged interface between two solids may be
modeled as a continuous distribution of springs characterized by
stiffness parameters.

One of the earlier works dealing with imperfect spring-like
interfaces is Jones and Whittier (1967). In Jones and Whittier
(1967), the interaction of elastic waves with flexibly bonded inter-
faces is studied. Since then, many boundary value problems involv-
ing spring-like models of imperfect interfaces have been solved
(see, for example, Ang, 2007; Fan and Wang, 2003; Margetan
et al., 1988; Zhong and Meguid, 1997). Nevertheless, the microme-
chanical analysis of microscopically damaged interfaces, which in-
cludes estimating the effective properties of interfaces, has been
investigated by relatively fewer researchers.

Micromechanical models based on continuum mechanics, such
as the Voigt approximation, the Reuss approximation, the self-con-
sistent scheme and the three-phase model, for estimating the
effective material properties of microscopically heterogenous
solids may be found in the research literature (Aboudi, 1991;
Christensen, 1990; Li and Wang, 2008). Those models do not

attempt to capture all the minute details of the microstructures
in the heterogeneous solids. For a more realistic micro-mechanical
analysis but one still based on continuum mechanics, the micro-
structures may be modeled as, for example, randomly generated
holes or inclusions in the solids (see Elvin, 1996; Roberts and
Garboczi, 1999; Torquato, 2002). Such an approach has been
extended by Wang et al. (2012) to the micromechanical analysis
of a microscopically damaged interface between two elastic half-
spaces under antiplane deformations.

In Wang et al. (2012), the microscopically damaged plane
interface is modeled using periodically distributed interfacial mi-
cro-cracks. A period length of the damaged interface contains an
arbitrary number of randomly positioned micro-cracks. The length
of a micro-crack is taken to be a continuous random variable fol-
lowing a given probability distribution. The procedure for estimat-
ing the effective stiffness of the interface, which requires solving
numerically hypersingular integral equations for the micro-cracks,
is described in detail in Wang et al. (2012). The hypersingular inte-
gral formulation is advantageous in the micromechanical analysis
of the interface (Ang, 2013) as the jump in the displacement across
opposite faces of each of the micro-cracks appears directly as an
unknown function in the integral equations. Thus, no post-process-
ing of the numerical solution of the integral equations is required
to compute the interfacial displacement jump.

Nevertheless, only very limited statistical results for the effec-
tive stiffness of the interface are obtained and presented in Wang
et al. (2012) using micro-cracks with normally distributed lengths.
In reality, the length of a micro-crack may not vary according to a
normal distribution. In the present paper, a more realistic
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statistical variation of the micro-crack length, based on the chi-
squared (v2) distribution, is used to generate randomly the length
of each micro-crack. The number of micro-cracks per period length
of the interface required to homogenize the effective stiffness is
examined. Also investigated are the effects of the micro-crack
length and the crack-tip gap between two neighboring micro-
cracks on the effective stiffness.

2. Micromechanical model

With reference to a Cartesian coordinate frame denoted by
Ox1x2x3, consider two dissimilar homogeneous anisotropic elastic
half-spaces occupying the regions x2 > 0 and x2 < 0. The plane
interface x2 ¼ 0 joining the half-spaces is microscopically damaged
containing microscopic voids and defects.

The bimaterial undergoes an antiplane elastostatic deformation
such that the only non-zero component of the displacement field is
along x3 direction. The elastic displacement u3ðx1; x2Þ and stress
r3iðx1; x2Þ along the microscopic portion 0 < x1 < l of the damaged
interface may be homogenized by the averaging procedure

u3ðx1;0
�Þ ¼ 1

2l

Z x1þl

x1�l
u3ðx1;0

�Þdx1;

r3iðx1;0
�Þ ¼ 1

2l

Z x1þl

x1�l
r3iðx1;0

�Þdx1;

ð1Þ

where x1 denotes the midpoint of the microscopic portion of the
interface.

In terms of the homogenized field variables u3 and r3i, the
macro-level spring model for the interface (see, for example, Ha-
shin, 1991) is defined by

kðu3ðx1;0
þÞ � u3ðx1;0

�ÞÞ ¼ r32ðx1; 0
þÞ ¼ r32ðx1;0

�Þ; ð2Þ

where k is the effective stiffness of the interface. Note that
u3ðx1;0

þÞ � u3ðx1; 0
�Þ gives the homogenized displacement jump

across the damaged interface.
The conditions in (2) are also given in Benveniste and Miloh

(2001). In Benveniste and Miloh (2001), they are derived using
an asymptotic analysis on the elastic fields in an infinitesimally
thin layer of an extremely soft material bonded between the elastic
half-spaces.

To estimate the effective stiffness k in the macro-model defined
by (2), Wang et al. (2012) simulated the microscopically damaged
interface in Fig. 1 by proposing a micromechanical model in which
the microscopic voids and defects of the interface are replaced by
periodically distributed interfacial micro-cracks. More specifically,
the part of the interface defined by 0 < x1 < L; x2 ¼ 0, contains M
interfacial micro-cracks with the tips of the mth crack given by
ðaðmÞ;0Þ and ðbðmÞ;0Þ, where

0 < að1Þ < bð1Þ < að2Þ < bð2Þ < � � � < aðMÞ < bðMÞ < L:

The micro-cracks on the remaining part of the interface lie in the re-
gions where aðmÞ þ nL < x1 < bðmÞ þ nL for m ¼ 1;2; . . . ;M and
n ¼ �1;�2; . . .. The elastic half-spaces are perfectly bonded on the
uncracked parts of the interface. The periodically distributed mi-
cro-cracks are traction-free under the action of the antiplane con-
stant shear load given by r3i ¼ rðintÞ

3i at infinity, where rðintÞ
3i is the

antiplane shear stress in the bimaterial for the corresponding case
where there is no micro-crack on the interface. For the studies here,
rðintÞ

3i is chosen such that rðintÞ
32 ¼ S0 on all the micro-cracks, where S0

is a positive constant. A sketch of the micromechanical model is gi-
ven in Fig. 2.

As derived in Wang et al. (2012), the hypersingular integral
equations for the micromechanics model of the microscopically
damaged interface are given byXM

m¼1

Du3ðx1Þ
1

x1 � n1
þ 1

ðLþ x1 � n1Þ2
þ 1

ðLþ n1 � x1Þ2

"

þ 1
L2 w�

Lþ x1 � n1

L

� �
þ 1

L2 w�
Lþ n1 � x1

L

� �#
dx1

¼ �pðbð1Þ þ bð2ÞÞ
bð1Þbð2Þ

S0 for aðnÞ < n1 < bðnÞ ðn ¼ 1;2; . . . ;MÞ: ð3Þ

where denotes that the integral is to be interpreted in the Hadam-
ard finite-part sense, Du3ðx1Þ ¼ u3ðx1;0

þÞ � u3ðx1;0
�Þ denotes the

displacement jump across the opposite faces of the micro-cracks,
w�ðxÞ ¼ w1ðxÞ � 1=x2;w1ðxÞ is the trigamma function,

bðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðpÞ44 CðpÞ55 � ðC

ðpÞ
45 Þ

2
q

and CðpÞ44 ; C
ðpÞ
45 and CðpÞ55 are the elastic moduli

of the anisotropic materials in the half-spaces ðp ¼ 1 for the mate-
rial in x2 > 0 and p ¼ 2 for the material in x2 < 0).

A numerical method for solving (3) for the displacement
jump Du3ðx1Þ over each of the micro-cracks is described in

Fig. 1. Micro-level and macro-level models of the damaged interface.
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