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a b s t r a c t

A three-dimensional analysis is performed for an infinite transversely isotropic elastic body containing an
insulated rigid sheet-like inclusion (an anticrack) in the isotropy plane under a remote perpendicularly
uniform heat flow. A general solution scheme is presented for the resulting boundary-value problems.
Accurate results are obtained by constructing suitable potential solutions and reducing the thermal prob-
lem to a mechanical analog for the corresponding isotropic problem. The governing boundary integral
equation for a planar anticrack of arbitrary shape is obtained in terms of a normal stress discontinuity.
As an illustration, a complete solution for a rigid circular inclusion is obtained in terms of elementary
functions and analyzed. This solution is compared with that corresponding to a penny-shaped crack
problem.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Determining the thermal stresses induced by inhomogeneities
is a very important problem in studying the thermoelastic behavior
of advanced engineering structures. Knowledge of the thermal
stresses is needed to improve the performance of these structures
and to predict reliable service lifetimes.

It is well-known that, in addition to cracks, significant stress
concentrations occur near the rigid sheet-like edges of inclusions,
from which cracking, debonding and damage may emanate. Cracks
that are characterized by a displacement discontinuity and flat
rigid inclusions (known as anticracks) with a traction discontinuity
are two dangerous extremes of inhomogeneities in bodies. There-
fore, fully three-dimensional thermoelastic problems involving
cracks and anticracks in elastic solids have become the subject of
extensive investigations because of the importance of the prob-
lems in structural integrity assessments. Considerable advances
have been made in studying crack problems with thermal effects:
see for example, monographs by Kassir and Sih (1975), Kit and
Khay (1989) and Dell’Erba (2002). Solutions of significant problems
involving penny-shaped, elliptical and half-infinite plane cracks
have been developed by Florence and Goodier (1963), Kassir and
Sih (1967), Kassir (1969), Kit and Poberezhnyi (1972), Barber
(1975), Krishna Rao and Hasebe (1995), Chaudhuri (2003a,b,
2012) and Stadnyk (2010) for isotropic bodies and by Tsai

(1983a,b), Noda and Ashida (1987), Kirilyuk (2001), Podil’chuk
(2001), Chen et al. (2004) and Li (2012) for transversely isotropic
media. However, considerable fewer studies have been conducted
on the thermal stresses around anticracks. Two dimensional prob-
lems, such as an insulated or conductive ribbon-like rigid inclusion
in an isotropic elastic body, have been studied by Sekine (1977)
and Sekine and Mura (1979). Thermoelastic plane problems of
the disturbance of a uniform heat by an elliptic rigid inclusion in
an anisotropic elastic matrix were investigated by Lin and Hwu
(1993) and Chao and Shen (1998). Comparatively fewer three-
dimensional analyses have been conducted because of the mathe-
matical difficulties encountered in the solution of these problems.
Intractable results for infinite transversely isotropic bodies con-
taining rigid elliptic inclusions under various temperature loads
were reported in a review by Podil’chuk (2001). Kaczyński and
Kozłowski (2009) developed a method to determine the steady-
state thermal stresses and deformations in an elastic isotropic
space that has been weakened by an insulated anticrack of arbi-
trary shape under a uniform perpendicular heat flow. In particular,
Kaczyński and Monastyrskyy (2009a) obtained a complete elemen-
tary solution for a penny-shaped rigid inclusion with heat conduc-
tivity. More recently, Kaczyński and Monastyrskyy (2013) studied
a case in which heat flow is incident along the inclusion plane.

For the past several decades, transversely isotropic materials
(e.g., hexagonal crystals, some fiber-reinforced composites, piezo-
electric materials and rocks) have been widely used in materials
science and geomechanics (Ting, 1996). Yue and Selvadurai
(1995), Chaudhuri (2003a), Altenbach et al. (2004) and Shodja
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and Ojaghnezhad (2007) have shown that rigid inhomogeneities
have a wide range of practical applications. Hence, it is natural to
evaluate the strength of transversely isotropic materials using
solutions from analogous problems in the theory of thermoelastic-
ity for bodies containing anticracks. The objective of this paper is to
include the effect of material anisotropy in analyzing a uniform
heat flow that is perpendicularly incident on a rigid lamellar inclu-
sion. Thus, the results obtained by Kaczyński and Kozłowski (2009)
are generalized to transversely isotropic materials that are charac-
terized by five elastic constants and two thermal moduli.

This paper is organized as follows. In Section 2, the fundamental
equations of linear transversely isotropic thermoelasticity are
presented, neglecting the effects of both coupling and inertia.
Consequently, a thermal problem and a problem with induced
thermal stresses are formulated and solved for an arbitrarily
shaped anticrack in Sections 3 and 4, respectively. As an illustra-
tion, a complete solution is formulated and analyzed for the
penny-shaped rigid inclusion in Section 5. Finally, Section 6 con-
cludes the article.

2. Transversely isotropic uncoupled thermoelasticity

First, we outline the governing equations of thermoelasticity in
an uncoupled static setting for a transversely isotropic medium. A
more detailed treatment may be found in the monograph by Ding
et al. (2006).

The following index notation is used throughout the paper:
Latin subscripts always assume values 1, 2 and 3; and Greek
subscripts assume values of 1 and 2. The Einstein summation
convention holds unless otherwise stated, and subscripts preceded
by a comma indicate partial differentiation with respect to the
respective coordinates.

In a rectangular Cartesian coordinate system O X1 X2 X3 denote
unknown quantities at the point ðx1; x2; x3Þ: T denotes the variation
in the temperature (where T ¼ 0 corresponds to the stress-free
state); and the components of the displacement, the stress and
the heat flux are denoted by ui;rij; qi, respectively.

Consider a homogeneous transversely isotropic thermoelastic
space and assume that the axis of elastic symmetry coincides with
the X3-axis such that the X1 and X2-axes lie in the plane of trans-
verse isotropy.

Neglecting the effect of the strains on the temperature field
allows the thermoelastic problem to be re-cast as two separate
subproblems that must to be solved consecutively. The first prob-
lem is a purely thermal problem that is governed by the Fourier
law of steady-state heat conduction and the 3D quasi-Laplace

equation for the temperature distribution in the absence of heat
sources (Nowinski, 1978)

qa ¼ �k1T ;a; q3 ¼ �k3T ;3; ð1Þ

T ;cc þ k�2
0 T ;33 ¼ 0; ð2Þ

where k1 and k3 are the conductivity coefficients in the O X1 X2 of
isotropy plane and the X3-direction, respectively, and k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k1=k3

p
.

After the temperature field has been determined using the pre-
scribed thermal boundary conditions, one can solve the induced
thermal stress problem that is governed by the generalized Lamé
displacement equations of static equilibrium in the absence of
body forces,

1
2
ðc11 þ c12Þuc;ca þ

1
2
ðc11 � c12Þua;cc þ c44ua;33 þ ðc13 þ c44Þu3;3a

¼ b1T ;a; a ¼ 1;2
ðc13 þ c44Þuc;c3 þ c44u3;cc þ c33u3;33 ¼ b3T ;3;

ð3Þ

and the constitutive stress-displacements relations for transversely
isotropic thermoelastic materials:
r3a ¼ c44ðua;3 þ u3;aÞ; ð4Þ

r33 ¼ c13uc;c þ c33u3;3 � b3T; ð5Þ

r12 ¼
1
2
ðc11 � c12Þðu1;2 þ u2;1Þ; ð6Þ

r11 ¼ c11u1;1 þ c12u2;2 þ c13u3;3 � b1T; ð7Þ

r22 ¼ c12u1;1 þ c11u2;2 þ c13u3;3 � b1T; ð8Þ

where the thermal moduli are given as follows:

b1 ¼ ðc11 þ c12Þa1 þ c13a3;

b3 ¼ 2c13a1 þ c33a3:
ð9Þ

In the equations given above, cij are the five independent elastic
constants, and a1 and a3 denote the coefficients of thermal expan-
sion in the isotropy plane and along the X3-axis, respectively.

3. Thermal anticrack problem and solution

Let us consider a transversely isotropic space that is weakened
by a heat-insulated rigid inclusion (anticrack), which occupies a
bounded plane area S with a smooth profile in the isotropy plane
x3 ¼ 0. There is a constant heat flux qð1Þ ¼ ½0;0;�q0�; q0 > 0 in
the direction of the negative X3-symmetry axis (Fig. 1). Thus, it is
necessary to solve Eq. (2), which satisfies the following thermal
boundary conditions:

q3 ¼ �k3T ;3 ¼ 0; ðx1; x2; x3 ¼ 0�Þ 2 S

ðheat� insulated inclusionÞ; ð10Þ

qa ¼ �k1T ;a ¼ 0; q3 ¼ �k3T ;3 ! �q0 as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
!1

ðperpendicular heat fluxÞ: ð11Þ

The solution has the following form:

T ¼ Tð0Þ þ ~T; ð12Þ

where

Tð0Þ;cc þ k�2
0 Tð0Þ;33 ¼ 0; ðx1; x2; x3Þ 2 R3;

Tð0Þ;1 ¼ Tð0Þ;2 ¼ 0; Tð0Þ;3 !
q0

k3
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
!1

ð13Þ
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Fig. 1. An anticrack in a transversely isotropic space under a vertically uniform heat
flow.
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