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a b s t r a c t

Inverse analysis is widely applied to the identification of material properties or model parameters. In
order to improve the computational efficiency of the inverse method based on the genetic algorithm,
an interpolation scheme upon the response surface constructed by the finite element simulation has been
adopted in this paper. Meanwhile, a gradual homogenization treatment scheme has also been presented
to improve the convergence of the inverse method based on the Kalman filter algorithm. Both methods
are proven effective in dealing with the single-objective inverse problem. However, literature studies
show that the adoption of multiple types of experimental information is useful to improve the accuracy
of inverse analysis. In this case, it turns into a multiple-objective inverse problem. Our practice proved
that the above-mentioned two methods might not yield a proper result if the sensitivity issue of different
types of information is not considered. Therefore, another multi-objective inverse method, in combina-
tion of the above two optimization algorithms and a weight-estimating scheme that can consider such
sensitivity, has been further presented. Finally, by using a mixed-mode crack propagation simulation
and two types of experimental information (loading-displacement response curve and crack path profile),
the parameters of the cohesive zone model were inversely identified and its simulation results are in
good agreement with the experiment.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cohesive zone models (CZM) are the direct extension of Dugdale
(1960) and Barenblatt (1962) models that were originally intro-
duced to consider the effects of plasticity in linear elastic fracture
mechanics. They have been widely used to simulate the interfacial
delamination and debonding as well as fatigue and fracture of non-
interfacial materials. (Xu and Needleman, 1995; Benzarti et al.,
2011; Xu and Yuan, 2009a, 2009b, 2011; Zhang and Paulino,
2005; Benabou et al., 2013; Nielsen and Hutchinson, 2012; Scheider
et al., 2006). The CZM treats each potential crack as two internal
surfaces connected by cohesive tractions, and uses a traction-
separation law to describe the separation process. Once the cohe-
sive law is determined, the CZM parameters, mainly consisting of
fracture energy and cohesive strength, play an important role in
representing the evolution of damage and crack. However, the iden-
tification of a cohesive law and its parameters is still an open issue.
Direct experimental measurements of the parameters near crack
tips are highly non-trivial because the fracture process zone is very
small and its stresses cannot be measured directly. Therefore,

inverse techniques, depending on experimental information and
numerical simulation, have been developed recently in order to ob-
tain an idealized estimation of the CZM parameters (Valoroso and
Fedele, 2010; Gustafson and Waas, 2009; Maier et al., 2005; Oh
and Kim, 2013; Wang et al., 2010; Bocciarelli and Bolzon, 2007).

There are mainly two types of inverse methods presented in the
literature. The first one is to use the global response information,
mainly in consideration of single experimental information, e.g.,
loading-displacement response curve, to perform an inverse iden-
tification (Maier et al., 2005; Oh and Kim, 2013; Wang et al., 2010;
Bocciarelli and Bolzon, 2007). It is easy to acquire the experimental
data and implement its numerical application, but it is difficult to
obtain a unique solution close to the exact result since many in-
verse problems are generally ill-posed (Elices et al., 2002). Accord-
ingly, a well-conditioned inverse scheme is highly desirable, which
should not only develop a robust and reliable inverse theory, but
also provide sufficient and different types of constraint conditions.
Note that the constraint condition in this context means the
experimentally obtained information such as loading-displace-
ment response curve and crack path etc. Apparently, different
types of experimental information will bring different influences
on solution in inverse analysis. However, how to evaluate such
influence and combine different experimental information to
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obtain a proper solution of CZM parameters is rarely studied. Re-
cently, Valoroso et al. (2013) used both the loading-displacement
curve and the crack extension data to arrive at a useful and practi-
cal way to identify the mode-I cohesive parameters for bonded
interfaces via inverse method. However, investigation of the differ-
ences between the adopted characteristic information and their
influences on inverse analysis is not involved.

Another type of inverse method is to employ some advanced
experimental techniques, e.g., digital image correlation or elec-
tronic speckle pattern interferometry, to perform an inverse analy-
sis (Shen and Paulino, 2011; Hong and Kim, 2003; Fedele et al.,
2009; Ferreira et al., 2011; Fedele and Santoro, 2012). They make
use of full field information rather than the global response to
deduce the model parameters. Despite their rapid development
recently, many issues still need to be further addressed, e.g., reli-
ability and convergence etc. Moreover, they need to be equipped
with high-performance optical instruments and the test procedures
are relatively more complex than the first type of methods. There-
fore, this paper does not involve this type of methods at present.

As it is known, optimization algorithms usually play an impor-
tant role in the inverse methods. They mainly consist of global
searching algorithms and gradient-based local optimization algo-
rithms. The global searching algorithms, including the genetic
algorithm (GA) (Cropper et al., 2012; Amaya et al., 2003; Jin and
Cui, 2010), feature high accuracy but they are often limited by
low efficiency in solution, especially when combined with finite
element analysis. The gradient-based local optimization algo-
rithms, e.g., the Kalman filter algorithm (KFA) (Gu et al., 2003; Del-
alleau et al., 2006; Corigliano et al., 2000), can consider the
uncertainty in measurement and provide the whole evolution pro-
cess information for each initial estimate, but they can easily fall
into a local optimization solution or cause a convergence problem.
Therefore, both types of algorithms have their own drawbacks
when applied in the inverse analysis. Besides, the optimization
algorithms generally feature a cost function to define the differ-
ence between the measured and computed results. The construc-
tion of the cost function is generally simple for the single-
objective inverse analysis. However, when the multiple-objective
inverse analysis is conducted, the influences of different informa-
tion on solution have to be investigated and the cost function
needs to be appropriately constructed.

Aimed at the defects of the above-mentioned optimization algo-
rithms (GA and KFA), this paper proposes certain improvement
when they are applied to the inverse analysis. The interpolation cal-
culation on response surface is employed to substitute for a great
number of FEM simulations in order to improve the computational
efficiency. Besides, a gradual homogenization treatment scheme
has also been introduced to improve the convergence of the KFA
based inverse method. By taking advantage of both the GA and
the KFA based inverse methods, a new method has been developed
to perform the inverse analysis considering both the experimental
loading-displacement curve and the crack path profile information.
Finally, by combining the XFEM with the cohesive zone model, a
mixed-mode crack propagation has been simulated and the param-
eters of the cohesive zone model are inversely identified.

2. Inverse methods

Generally, the inverse analysis is to find the parameters mini-
mizing the difference between the predicted response and the
experimental results. Therefore, optimization algorithm is one of
the most important parts, determining the accuracy and the effi-
ciency of inverse analysis. In the following, the theoretical basis
of the GA and the KFA is briefly reviewed. At the same time,
significant improvement against their respective drawbacks is

introduced and a new multiple-objective inverse method based
on the above two optimization algorithms is proposed.

2.1. Inverse method based on GA

The genetic algorithm was inspired by Darwin’s theory of evo-
lution and works in a similar way as the biological evolution (Hau-
pt and Haupt, 2004). As a kind of global optimization technique
based on randomized operators (e.g., selection, crossover and
mutation), this search method can yield a set of solutions close
to the optimum without being trapped into local optimums in a gi-
ven search domain. The main steps of its application to the present
inverse analysis are concluded below. A more thorough description
can be found in the book written by Haupt and Haupt (2004).

The structure of the GA applied in the inverse analysis can be
seen in Fig. 1. In the first step (Step 1), the area of search is defined
based on the number of model parameters Np that needs to be opti-
mized. The optimum problem is approached in the Np dimensional
space limited by the lower and the upper bounds of each parame-
ter according to a priori knowledge. At the same time, the values of
the initial estimates are binary encoded in a form of genes. The
combination of genes from different types of parameters will form
an individual. The second step (Step 2) is the initialization of pop-
ulation. The population is made of several individuals in the do-
main. The first generation of population is created by combining
different genes picked randomly from the search space.

In the next step (Step 3), the direct problem (e.g., simulating
fracture of material) is solved for each individual which corre-
sponds to CZM parameter set in the present study. Note that it is
necessary to convert the binary string (genetic chromosome) back
to the corresponding real number of CZM parameters before simu-
lation. As we know, such simulation usually incurs a heavy compu-
tational expense. Apparently, the calculations based on all
individuals are extremely inefficient. To circumvent this problem,
an interpolation scheme on response surface is adopted here. Its
details will be introduced in the context.

In Step 4, the cost function is constructed to calculate the fitness
value in the GA according to the numerical results from Step 3 and
the experimental data. It is quite an important step for obtaining
an accurate result of inverse analysis. Since multiple kinds of infor-
mation have been adopted to identify the model parameters in the
present study, a weighted sum form has been developed here. The
characteristic variables V of different loading steps are chosen to
formulate the cost function f

f ¼
Xm

j¼1

Xns

t¼1

wj
V simu

t;j � Vmeas
t;j

Vmeas
t;j

 !2

ð1Þ

where V simu
t;j and Vmeas

t;j , representing reaction forces and crack path
information in the upcoming discussed example, are the character-
istic sub-variables obtained by simulation and experiment at the
load step t, respectively; m is the number of characteristic variable
(or information) types; ns is the total number of iterative loading
steps; wj is the weight value embodying the influences of different
information types on solution, which should satisfy

Pm
j¼1wj ¼ 1. The

fitness value fit of each individual can be evaluated by

fit ¼ 1ffiffiffiffiffiffiffiffiffiffi
f=ns

p ð2Þ

In Step 5 the termination criterion is checked. The inverse anal-
ysis is terminated if the prescribed number of generation is
reached; otherwise, a new generation is created (Step 6). In this
step, based on the previous calculated fitness values of all individ-
uals the population is sorted in an ascending or descending order.
To collect the best individual, only a certain ratio of them are
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