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a b s t r a c t

This work discusses the choice of a reference frame for beam section stiffness properties. Established con-
cepts as the center of elasticity, the center of stiffness and the center of compliance are discussed and
contextualized. An interpretation of univocally defined generalized strain transformations is given in
terms of minimization of appropriate norms of the stiffness and compliance matrices of the beam section
that univocally define special reference points. Transformations of generalized strain perturbations that
preserve the angular strain are sought. They are subsequently constrained to represent a change of ref-
erence point, and further restricted to lie in the plane of the section. Each transformation is univocally
defined and given a clear mathematical and geometrical interpretation. It is recognized that transforma-
tions that decouple forces and linear strains from moments and angular strains cannot be described as a
mere change of reference point.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The notion of ‘elastic center’ is well present in mechanics. In the
second half of the nineteenth century, Karl Culmann developed
graphical methods for the design of pile foundations for railroad
bridges which involved the notion of elastic center (Culmann,
1866). In 1939, Vetter presents a method based on earlier works
of other authors that involves the reduction of forces to an equiv-
alent force applied in the elastic center, which causes a pure trans-
lation without rotation, and an equivalent moment which causes a
pure rotation about the elastic center (Vetter, 1939). Such prob-
lems are extremely simple; they address two-dimensional systems
with few rod elements acting along fixed axes; however, they indi-
cate an attention to noteworthy definitions and the choice of
points with special properties to find ingenious solutions to
engineering problems (Kardestuncer, 1974).

The notions of ‘center of stiffness’ (CoS) and ‘center of compli-
ance’ (CoC) have been introduced by Lončarić on solid mathemat-
ical foundations for compliant structures using screw theory
(Lončarić, 1987), addressing compliant robotic applications. Lipkin
et al., based on earlier work (Dimentberg, 1968), discussed the
properties of the CoS and CoC, and introduced the ‘center of elastic-
ity’ (CoE) as the center of the reciprocal three-systems that repre-
sent the wrench- and twist-compliant axes of a compliant system

(Lipkin and Patterson, 1992; Ciblak and Lipkin, 1994, 1999). Such
notions have been extensively used, and are still used nowadays,
in several applications ranging from robotics (Roberts, 2002) to
biomechanics (Enea et al., 2013). By referring the stiffness of a
compliant system to the CoS, forces opposing rotations and mo-
ments opposing displacements are maximally decoupled.

In beam theory, the notions of ‘shear centroid’ (or ‘shear center’,
‘center of twist’, ‘flexural center’, namely the point that must lie
along the line of action of a shear force for the section not to twist)
and ‘axial strain centroid’ (or ‘tension center’, namely the point in a
beam section where the neutral axes cross, and where an applied
axial load does not produce any bending) are well understood.
Nowinski in 1961 discussed an ‘axis of twist’ and ‘center of flexure’
for certain classes of anisotropic beams (Nowinski, 1961). Reissner
and Tsai discussed the problem for cylindrical shell beams
(Reissner and Tsai, 1972). In the seminal work (Giavotto et al.,
1983), a simple transformation was proposed to identify the loca-
tion of the shear and axial strain centroids of the beam section in
terms of decoupling linear and angular generalized stresses and
strains. However, such procedure cannot be described in terms of
a change of reference system. In Rehfield and Atilgan (1989),
Kosmatka (1994) and Yu et al. (2002) it is noted that some com-
monly accepted definitions of characteristic points like the shear
center may depend on the spanwise location along the beam, e.g.
when bending-torsion coupling is present. In Andreaus and Ruta
(1998), a detailed review of the shear center problem is presented.
Ecsedi discussed the centre of twist and the centre of shear for
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straight isotropic nonhomogeneous beams (Ecsedi, 2000). Bottasso
et al. discussed invariance issues associated with the application of
numerical methods, also addressing the case of referring beam sec-
tions to arbitrary points (Bottasso et al., 2002). Sapountzakis and
Mokos presented an original Boundary Element Method (BEM)
solution to transverse shear loading of beams (Sapountzakis and
Mokos, 2005) in which transverse loads are applied in the shear
center to avoid the induction of twisting moment. The discussion
about twist and shear centers is active, as testified by very recent
literature on the topic (Barretta, 2012; Ecsedi and Baksa, 2012).

In recent times, the so-called Absolute Nodal Coordinate For-
mulation (ANCF) became popular also for the analysis of deform-
able continua, including beams. Apparently, such an approach
does not need to care about such issues as the definition of special
centroids, since the absolute coordinates of the points that define
the geometry of the beam represent the degrees of freedom of
the problem, much like for solid nonlinear finite elements. The
comparison of ANCF with so-called geometrically exact beam for-
mulations (GEBF) is an active topic of research (Romero, 2008).

This work presents an interpretation of the CoS concept in rela-
tion with beam section characterization. Univocally defined gener-
alized strain transformations are interpreted in terms of
minimization of appropriate norms of the stiffness matrix of the
beam section. To the author’s knowledge, such interpretation has
never been pointed out before. The beam model is briefly pre-
sented in Section 2, focusing on referring linear constitutive prop-
erties to an arbitrary reference. The choice of the reference frame
for beam section stiffness properties is discussed in Section 3, with
a newly proposed definition that specializes Lončarić’s CoS to beam
stiffness properties. Examples are proposed in Section 4.

2. Beam model

The beam model is formulated using generalized coordinates,
namely the position of an arbitrary reference point and the orien-
tation of an arbitrary triad that define the ‘pose’ of the beam sec-
tion as a one dimensional Cosserat continuum. See for example
the so-called geometrically exact beam formulation named after
Reissner-Simo in Ritto-Corrêa and Camotim (2002) and Merlini
and Morandini (2013).

The main focus of this work is on the definition of a possibly
advantageous frame of reference to express the elastic properties
of the beam section, so the choice of a specific approach is deemed
inessential, and only the strain energy per unit span of the beam,
Wsec, is actually considered.

2.1. Constitutive model

Consider the strain energy per unit span of a beam,
Wsec ¼WsecðwÞ, where w ¼ fm;jg represents a suitable measure
of the generalized strains, namely the linear strain, m, and the angu-
lar strain j, as defined, for example, in Ritto-Corrêa and Camotim
(2002) and Merlini and Morandini (2013).

The generalized internal forces, namely the internal force, f, and
the internal moment, m, are defined as the partial derivatives of
the strain energy with respect to the generalized strains, namely

f ¼ @Wsec

@m
ð1aÞ

m ¼ @Wsec

@j
ð1bÞ

As a consequence, the internal force and moment are intrinsically
expressed with respect to the reference point and orientation of
the section, as much as the generalized strains are. In this sense,

the stiffness matrix can be seen as the Hessian matrix of the strain
energy with respect to the generalized strains; thus,

@f
@m

� �
¼ K

@m

@j

� �
; ð2Þ

in which @ð�Þ indicates a perturbation, following the notation used
in Merlini and Morandini (2013). In fact, the constitutive relation-
ship of Eq. (2) must be interpreted as the tangent map that ex-
presses the generalized force increments as functions of the
generalized strain increments when beam sections made of hype-
releastic material are considered. It applies to generalized finite
forces and strains when K is constant, i.e. when the strains are small
(although not necessarily infinitesimal), despite the overall dis-
placements and rotations being arbitrary.

The object of this work is the determination of special reference
points for the tangent map between generalized strains and gener-
alized forces. It is worth anticipating that when such map is not con-
stant, those reference points depend on the straining of the beam
section, and thus lose their practical appeal, although they preserve
a strong mathematical and physical significance. For the sake of
simplicity, in the following a stiffness matrix representing a con-
stant tangent map is considered; this fact is taken axiomatically.

In simple models, e.g. those analogous to Conventional Lami-
nate Theory (CLT), the actual inplane straining of the section is
implicitly dealt with considering constitutive properties for axial
stress state. More sophisticated models, like the one proposed in
Giavotto et al. (1983) and subsequent developments (the inter-
ested reader may refer to Hodges’ book (Hodges, 2006) for more
details, and the recent works (Ghiringhelli et al., 2008; Morandini
et al., 2010)), explicitly (although often approximately, either axi-
omatically or in a finite element sense) account for inplane and
out-of-plane warping.

The matrix can be partitioned as

K ¼
A B
BT C

� �
; ð3Þ

submatrices A; B and C are 3� 3, with AT ¼ A > 0; CT ¼ C > 0. The
positive definiteness of K; A, and C can be lost only in degenerate
cases that in practice do not need to be considered in this context.

Consider now the corresponding compliance matrix,

F ¼ K�1 ¼ A B
BT C

" #
ð4Þ

with

A ¼ A� BC�1BT
� ��1

¼ A�1 þ A�1B C� BT A�1B
� ��1

BT A�1
; ð5aÞ

B ¼ � A� BC�1BT
� ��1

BC�1 ¼ �A�1B C� BT A�1B
� ��1

; ð5bÞ

C ¼ C�1 þ C�1BT A� BC�1BT
� ��1

BC�1 ¼ C� BT A�1B
� ��1

: ð5cÞ

Later on, it will be used to discuss the reference frame transforma-
tion in more detail.

2.2. Change of reference frame

The internal force f and moment m can be expressed as functions
of the internal force f 0 and m0 referred to a different pole, offset by p
from the original reference, and with respect to a different orienta-
tion R, both expressed in the reference frame of the section, namely

f
m

� �
¼

R 0
p� R R

� �
f 0

m0

( )
; ð6Þ
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