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The purpose of this paper is to propose numerical methods to determine the macroscopic bending
strength criterion of periodically heterogeneous thin plates in the framework of yield design (or limit
analysis) theory. The macroscopic strength criterion of the heterogeneous plate is obtained by solving
an auxiliary yield design problem formulated on the unit cell, that is the elementary domain reproducing
the plate strength properties by periodicity. In the present work, it is assumed that the plate thickness is
small compared to the unit cell characteristic length, so that the unit cell can still be considered as a thin
plate itself. Yield design static and kinematic approaches for solving the auxiliary problem are, therefore,
formulated with a Love-Kirchhoff plate model. Finite elements consistent with this model are proposed
to solve both approaches and it is shown that the corresponding optimization problems belong to the
class of second-order cone programming (SOCP), for which very efficient solvers are available. Macro-
scopic strength criteria are computed for different type of heterogeneous plates (reinforced, perforated
plates,...) by comparing the results of the static and the kinematic approaches. Information on the unit
cell failure modes can also be obtained by representing the optimal failure mechanisms. In a companion
paper, the so-obtained homogenized strength criteria will be used to compute ultimate loads of global
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1. Introduction

Heterogeneous periodic thin plates are frequently encountered
in civil engineering applications and the assessment of their bend-
ing strength capacities is of great importance for engineers. The
computation of the ultimate load of a structure can be performed
using two different class of methods. The first one, called the incre-
mental approach, relies on a step-by-step elasto-plastic computa-
tion of the whole loading path until failure. This approach is time
consuming, especially for complex structures, and poses conver-
gence issues when approaching the collapse of the structure. The
second class concerns direct methods using the theory of limit
analysis or, in a more general manner, yield design theory
(Salencon, 2013) to bracket the ultimate load using two theorems:
the lower bound static approach and the upper bound kinematic
approach. The efficiency of direct methods is that they require only
the verification of equilibrium equations and the fulfillment of the
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yield criterion at each point of the structure without any knowl-
edge of the mechanical behavior (apart from the strength criterion)
or the whole loading path.

The resolution of the static and kinematic approaches requires
solving convex nonlinear optimization problems. Numerical meth-
ods dedicated to yield design have gained recent attention due to
the development of mathematical programming techniques. A tra-
ditional approach involves the linearization of the yield criteria so
that the corresponding optimization problems can be formulated
within linear programming (Faccioli and Vitiello, 1973; Munro
and Da Fonseca, 1978; Sloan, 1988, 1989), for which powerful
softwares based on interior point algorithms are available. These
algorithms have also been developed for a broader class of optimi-
zation problems called second order cone programming (SOCP)
(Andersen et al., 1998) and implemented in commercial codes such
as the mosek software package (Mosek, 2008). Remarkably, a large
number of traditional yield criteria can be expressed using conic
constraints so that limit analysis problems can be formulated
within SOCP (Makrodimopoulos, 2010). Recent works applied this
method to 2D plane strain problems (Makrodimopoulos and
Martin, 2007; Ciria et al., 2008), frame structures or thin plates
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in bending (Le et al., 2010; Bleyer and de Buhan, 2013). The ob-
tained results seem very promising in terms of computational time
saving (problems with a large number of optimization variables
can be solved within seconds) as well as accuracy. For these rea-
sons, these numerical methods will be used in this work.

Despite the efficiency of the previously mentioned numerical
procedures, yield design of periodic media can be very difficult to
perform due to the presence of rapidly and strongly varying mate-
rial properties on a large scale structure. Numerical computations
on the heterogeneous structure are, therefore, out of reach due to
the high degree of local refinement needed to correctly capture
the properties of the inhomogeneities. Homogenization theory in
yield design has therefore been developed to characterize the
strength domain of an equivalent homogeneous media with the
idea that the corresponding homogenized yield design problem
would, then, be much easier to solve. Founding works are due to
Suquet (1985) and de Buhan (1986).

The determination of the homogenized or macroscopic strength
properties are quite similar to homogenization theory in elasticity.
The macroscopic strength domain is, indeed, determined by solving
an auxiliary yield design problem formulated on the unit cell of the
periodic plate. Homogenization of elastic in-plane periodic plates
has been widely studied by different authors. One main feature of
this problem is that a plate model is valid in the limit of a small
thickness h compared to the typical length L of the plate structure
whereas the homogenization procedure is valid in the limit of a
small in-plane typical length a of the unit cell compared to the same
length L. Therefore, different homogenization procedures have to be
considered depending on the relative values of a and h.

For instance, if a and h are of the same order, the unit cell has to
be modeled as a 3D medium (Bourgeois, 1997; Sab, 2003; Dallot
and Sab, 2008). On the contrary, if h is small compared to g, it is
possible to replace the original 3D heterogeneous body by a 2D
heterogeneous Love-Kirchhoff plate, which is homogenized in a
second step (see Duvaut and Metellus (1976) for elastic plates).
Our work will be focused on this specific case within the frame-
work of yield design theory and associated numerical methods.

This paper is organized as follows: in Section 2, the homogeni-
zation theory in yield design will be briefly described within the
framework of thin plates in bending and the equilibrium equations
of the associated Love-Kirchhoff plate model will be recalled. Sec-
tion 3 is devoted to the formulation of the auxiliary yield design
problem, either by the static approach or by the kinematic ap-
proach, and the definition of the macroscopic strength criterion
G"™™ is given. Numerical methods to solve the static approach are
then presented in Section 4 and the corresponding optimization
problem is formulated as a SOCP problem. Section 5 deals with
the case of the kinematic approach in the same manner. Finally,
different numerical examples are studied in Section 6, in order to
assess the performance of both numerical procedures.

2. Yield design of periodic thin plates: a homogenization
approach

2.1. The heterogeneous problem

We consider a heterogeneous thin plate occupying a domain Q
in the (x,y)-plane. Internal forces of the plate are the tensor of
membrane forces N, the tensor of bending moments M and the vec-
tor of shear forces V. Generally speaking, the set of admissible
internal forces with respect to the local strength of the plate at a
point x € Q can be represented as a bounded convex set G(x) :

(N,M,V) € G(x)

In the special case of thin plates in bending, it is generally assumed
that the plate is infinitely resistant to both membrane and shear forces

such that the local strength criterion depends on the bending mo-
ment only:

M € G(x)

Now, assuming that the plate loading depends upon several loading
parameters Q, the domain A of potentially safe loads Q is defined as
the set of loads such that there exists a statically admissible (S.A.)
bending moment field M(x) (i.e. which equilibrates the loading Q),
satisfying the strength criterion at each point of the plate (see Sale-
ncon, 2013):

A= {g | 3IM(x) SA. with Q, ¥x € Q M(x) ¢ G(&)}

Making use of the virtual work principle, one can obtain a kinematic
definition of A, dual to the previous static one. In the case of thin
plates in bending, the hypothesis of infinite membrane and shear
strength imposes that the plate kinematics obey the Love-Kirchhoff
condition. Let U be the virtual transversal velocity of the plate and g
the generalized kinematic parameters defined by duality in the
expression of the work of external forces, such that for all u kine-
matically admissible (K.A.) with q (i.e. piecewise continuous and
differentiable satisfying the kinematic boundary conditions), the
virtual work of external load is given by Pey (i) = Q - q. We then
introduce 7t(3;x), the support function of G(x) defined as

=)

T(};x) = sup M:

M<G(x)

\

and the associated maximum resisting work P,,(1) as follows':

Pun(l) = [ w1000

13>

where 7 = V,Vii(x) is the curvature tensor associated with the vir-
tual velocity field u. The following kinematic definition of A is then
obtained:

Qe A= Vi KA with q, Pee(ll) < P (1)

2.2. The homogenized problem

Now, the special case of plates which are periodic in their in-
plane direction will be considered. Therefore, there exist two vec-
tors aq,a, such that G(x) can be reproduced by periodicity along a;
and a, :

Gx+n1a; +n2a3) =G(X) VXeQ, Vny,mezZ

The two vectors a; and g, define the unit cell of the periodic plate.
In the case when the typical size a of the unit cell is small in com-
parison to the plate typical length L (a < L), the natural idea of
homogenization theory is to substitute the local heterogeneous
strength criterion G(x) by a homogenized or macroscopic strength
criterion G™™, as illustrated in Fig. 1.

Using the same definitions as before, we introduce

A" = {Q|3M(x) SA with Q, Vxe Q M(x) e ¢°"}

which also admits the following kinematic definition:

Q € A" = Vi KA. With q P (fl) < PP"(il) = /Q Mon ()42
where I, @) is the support function associated with G™™.

! This expression assumes that the rotation vector associated with the gradient of
the transversal velocity field 4 is everywhere continuous. If this is not the case,
another term taking into account the contribution of angular jumps has to be
considered in the expression of the maximum resisting work. For more details, we
refer to Bleyer and de Buhan (2013) and Section 5.
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