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a b s t r a c t

This study is concerned with the stability characteristics of helix shaped structures made of anisotropic,
pre-stressed, thin flanges arranged in such a way as to enable and develop multi-stability. Previous
research on similar structures assumed the structural response of the flanges to be one-dimensional
due to the narrow width of the pre-stressed members in comparison to their length. In this work, a
refined two-dimensional model of the flanges is employed to model the influence of transverse curvature
as well as the membrane strain energy associated with the non-zero Gaussian curvature deformations.
While longitudinal curvature changes and twist are inherent to the geometry of the helices; the trans-
verse curvature results from a consideration of boundary effects and the minimisation of the (expensive)
membrane elastic energy. A qualitative study of the changes in transverse curvature reveals ways of sim-
plifying the two-dimensional model into a simpler, closed form, one-dimensional version applicable to
helices with relatively narrow flanges. Correlation is found between experimental results, finite element
modelling and analytical predictions for the two models.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Large deformations in conventional engineering design are of-
ten associated with failure, frequently resulting in the sudden col-
lapse of the structure, as observed in the buckling of a slender
beam in compression. To the contrary, morphing structures are de-
signed to be reconfigured between radically different states while
keeping their load carrying capability and structural integrity
throughout the deformations. Owing to their variable geometry,
low weight and reduced complexity, research efforts are being
made to apply morphing structures to new aircraft design. Many
concepts depend on continuously actuated structures (Bartley-
Cho et al., 2004; Berton, 2006; Wildschek et al., 2009; Daynes
and Weaver, 2012a,b). However, if the structure possesses multiple
stable states, energy is needed only to change the shape, not to
hold it. The geometrical stable configurations correspond to min-
ima in the internal energy state of the structure and can occur ow-
ing to several phenomena when using fibre reinforced plastics
(FRP). Multi-stability in composite material was first reported by
Hyer (1981,1982) and was explained by the combination of resid-
ual stresses induced during the cure cycle and geometric nonlin-

earities in a non-symmetric laminated FRP lay-up. More recent
studies investigated the effect of Gaussian curvature (Kebadze
et al., 2004; Seffen, 2007; Guest et al., 2011; Brinkmeyer et al.,
2012), fibre pre-stress (Daynes et al., 2008, 2010), plastic deforma-
tion (Guest and Pellegrino, 2006) or bending stiffness tailoring
(Daynes et al., 2011) as a mean to introduce multi-stability.

The background of this research concerns the multi-stable
deployable composite device presented by Lachenal et al. (2012).
Their study focussed on the stability of helices made of two pre-
stressed narrow FRP strips joined by metallic spokes. Potential
applications include deployable booms for space structures; how-
ever the present concept could find applications as strain energy
storage structure, as in (Lachenal et al., 2013) or as a stiffness tai-
lored integrated twist morphing structure device (Lachenal et al.,
2014). In their previous research, the combination of pre-stress,
material properties and geometry was explored revealing bistable
devices with periodically nonlinear, yet tailorable deformation re-
sponses; enabling, for example, the helix to be stable in a tightly
coiled or fully extended configuration. The analytical model used
one-dimensional elements, hence zero transverse curvature was
assumed in addition to inextensional deformations of the pre-
stressed members, resulting in a compact analytical model. While
the corresponding initial experimental results matched closely
with both analytical and finite element model (FEM) results, this
one-dimensional model was only validated with a laminate free
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of off-axis fibres for the strips constituting the helix. Later experi-
ments with helices presenting off-axis laminates revealed the lim-
itations of the one-dimensional assumption and thus triggered the
present study.

In this paper, the model by Lachenal et al. (2012) is enhanced by
lifting the assumption of inextensional deformations and zero
transverse curvature. As such, the one-dimensional model is com-
plemented by the analytical model from Giomi and Mahadevan
(2011) including the effects of transverse curvature within aniso-
tropic strips. A related study was previously presented by Galletly
and Guest (2004) on the modelling of bistable, composite, tape-
spring like structures called slit tubes. Their work showed that slit
tubes made of an anti-symmetric lay-up possess a second, stable,
coiled equilibrium depending on the width of the structure. It
was demonstrated that a non-constant curvature develops across
the section of the tube, particularly close to the edges of the section
where a ‘‘boundary layer’’ appears. While for large cross sections
the boundary layer was small and did not affect the stability of
the slit tubes, for small cross sections the effect of this boundary
significantly affected the stability of the tube.

Our new work presents two models describing the stability of
helical structures: a two-dimensional model accounting for the
varying transverse curvature of the strips composing the helices
and a simpler, closed form, one-dimensional model with restricted
design space. The two dimensional model captures the mechanics
driving the development of transverse curvature. It shows in a no-
vel way that two competing effects occur across the width of the
strips and that the resulting balance of strain energy is highly
dependent on the relative size of the cross section. This study re-
veals ways of reducing the complexity of the two-dimensional
model for the helix back to a simpler, yet more complete one-
dimensional model in comparison with our prior work (Lachenal
et al., 2012); yielding an elegant relationship between stability,
material stiffnesses and structure geometry.

The article is structured as follows. A brief introduction to the
concept of pre-stressed strips arranged into helices is given first
in §2 followed by the strain energy formulation and the conditions
for stability. Details of the elastic deformations occurring through-
out the transformation of the structure are presented in §3: the key
features of the model from Giomi and Mahadevan are highlighted
followed by a qualitative study on the effect of the width on the
transverse curvature of the flanges. The study of the influence of
the transverse curvature on the stability landscape reveals a sim-
plification of the two-dimensional model and is presented with
the associated assumptions. Two cases of helices are detailed in
§4 to illustrate the improved analytical model; a third case study
exemplifies the simplified model. The finite element model of the
morphing structure is described in §5. Results from the analytical
model, FEM and experimental work are discussed in §6. Section 7
concludes the paper.

2. Morphing composite helix

2.1. Description

The structure in a twisted configuration is depicted in Fig. 1(a).
It consists of at least two flanges (or ‘‘strips’’) of dimensions L �W
kept apart by a set of rigid spokes of height H = 2R where R is de-
fined in§3. The device can twist by an angle / by applying opposite
moments about the X-axis at the extremities of the structure; as
such, the helix has an infinite number of configurations, from
tightly coiled to fully extended (respectively shown in black and
light grey in Fig. 1(b)). A global coordinate system (X,Y,Z) is at-
tached to the fixed end of the device while a local coordinate sys-
tem (x,y,z) is attached to each strip (see Fig. 2). The angle of helix,
given between the local x-axis and the global X-axis, defines the

configuration of the helix, as in Fig. 1(a). Multi-stability is achieved
by imposing a state of pre-stress to the strips: in the present case a
distributed bending moment mx is introduced by manufacturing
the parts on a cylindrical mould of radius Ri and then by subse-
quent flattening, as illustrated in Fig. 2. It is worth noting that this
model neglects the local constraints and end-effects imposed by
the spokes on the strips, but such effects are of little consequence
for present purposes.

2.2. Two-dimensional, extensional, helix model

Contrary to the study in the prior work of Lachenal et al. (2012),
the strips constituting the helix are considered as two-dimensional
elements of length L and width W. It is assumed in this two-dimen-
sional model that the deformations are extensional; therefore
bending and membrane strains are present in the structure, thus
the total strain energy can be expressed as (Kollar and Springer,
2003)
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where Dj is the tensor change of curvature and e0 is the mid-plane
strain tensor, both expressed in the local (x,y,z) coordinate system
shown in Fig. 2. The superscript T denotes the transpose of the ten-
sors. A, B and D are the in-plane, bending-extension coupling and
flexural stiffness matrices, respectively as defined in classic lamina-
tion theory (CLT) (Jones, 1999). Finally, n is the number of flanges.
Developing Eq. (1) yields three terms
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Eq. (2) shows three deformation patterns: a stretching deforma-
tions model, a bending deformations model plus a bending-exten-
sion coupling term.

We first consider the bending deformations, thus the strain en-
ergy takes the form (Kollar and Springer, 2003)

Ub ¼
n
2

Z Z
DjTDDjdxdy ð3Þ

As in the previous work of the authors, it is assumed that the
changes of x- and xy- curvatures (respectively Djx and Djxy) are
constant over L and W. It is demonstrated in §3 that the y-axis
change of curvature (transverse curvature) is a non-constant quan-
tity across W thus Eq. (3) becomes
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n
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The membrane strain energy resulting from the axial deforma-
tion is (Kollar and Springer, 2003)

Us ¼
n
2

Z Z
e0T

Ae0dxdy ð5Þ

It is later assumed, as in Galletly and Guest (2004), Giomi and
Mahadevan (2011), that only x-axis strains result from the defor-
mation of the helix; thus Eq. (5) reduces to

Us ¼
n
2
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Eq. (2) reveals a bending-extension strain energy term due to
the presence of the B matrix in the laminate properties. As detailed
above, it is assumed that only x-direction strains arise from the
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