
Transverse conductivity and longitudinal shear of elliptic fiber
composite with imperfect interface

V.I. Kushch ⇑, V.S. Chernobai
Institute for Superhard Materials of the National Academy of Sciences, 04074 Kiev, Ukraine

a r t i c l e i n f o

Article history:
Received 28 December 2013
Received in revised form 20 February 2014
Available online 28 March 2014

Keywords:
Composite
Ellipse
Imperfect interface
Effective conductivity
Multipole expansion
Unit cell model

a b s t r a c t

The paper addresses the problem of calculating the local fields and effective transport properties and lon-
gitudinal shear stiffness of elliptic fiber composite with imperfect interface. The Rayleigh type represen-
tative unit cell approach has been used. The micro geometry of composite is modeled by a periodic
structure with a unit cell containing multiple elliptic inclusions. The developed method combines the
superposition principle, the technique of complex potentials and certain new results in the theory of spe-
cial functions. An appropriate choice of the potentials provides reducing the boundary-value problem to
an ordinary, well-posed set of linear algebraic equations. The exact finite form expression of the effective
stiffness tensor has been obtained by analytical averaging the local gradient and flux fields. The conver-
gence of solution has been verified and the parametric study of the model has been performed. The
obtained accurate, statistically meaningful results illustrate a substantial effect of imperfect interface
on the effective behavior of composite.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The interfaces play an important, often dominant role in deter-
mining the local and overall behavior of heterogeneous solids. The
‘‘perfect interface bonding’’ (more correctly, perfect thermal/
mechanical contact) assumption widely used in micromechanics
is merely a more or less appropriate idealization. In fact, the inter-
faces are always imperfect: the atomic lattices mismatch, poor
mechanical or chemical adherence, surface contamination, oxide
and interphase diffusion/reaction layers, coatings, interface deb-
onding or cracking, etc. are possible reasons of imperfectness. Even
in the case of ideal contact between the constituents, the interface
resistance due to interfacial phonon scattering makes the composite
properties size-dependent (e.g., Every et al., 1992). Nanocomposites
(see, e.g., Luo and Wang, 2009 and the references therein) give an
another example of the size dependence due to interface effects.

In this paper, we focus on the two-dimensional (2D) scalar
(conductivity and out-of-plane shear) models of matrix type
composites. The problems involving composites of circular inclu-
sions with imperfect interface have received a considerable atten-
tion in the literature. Probably, the most known is the work by
Hasselman and Johnson (1987) which extends the famous
Maxwell’s formula for effective conductivity to a fibrous composite

with imperfect interface. An effect of interfacial characteristics on
the effective thermal conductivity of isotropic two-dimensional
periodic (square or hexagonal) composites of circular cylinders is
studied by Lu and Lin (1995). An approximate solution for a ran-
dom composite of imperfectly bonded fibers (Lu and Song, 1996)
takes into account pair wise fiber-to-fiber interactions and radial
distribution function. Graham and McDowell (2003) estimated
thermal conductivity of random fiber composite with imperfect
interface by the finite element analysis of the many-inclusion cell
model. These and other similar (Achenbach and Zhu, 1989; Hashin,
1990; Gao, 1995 among others) works are based on the assumption
that flux/traction is continuous whereas temperature/displace-
ment is discontinuous across the interface. Specifically, a jump in
the displacement is proportional, in terms of ‘‘spring-factor-type’’
interface parameters, to the interface traction. When these inter-
face parameters uniform along the entire length of the material
interface, the model is said to represent a homogeneously imperfect
interface. The case of inhomogeneous interface in out-of-plane
shear was considered by Ru and Schiavone (1997).

In the real-life composites, we do not expect the inclusions to be
of exact canonical shape. The above mentioned models are ade-
quate for the heterogeneous solids with equiaxial inclusions where
the mean radius is the only length parameter of inclusion. When
the inclusion’s shape deviates considerably from the circular one,
we need an additional length parameter to quantify it. In this case,
an ellipse (also possessing two length parameters) appears to be
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more appropriate model shape. In particular, an infinitely thin
elliptic hole is a convenient model of the straight crack. Therefore,
the ‘‘solid with elliptic inclusions’’ model seems appealing in both
theoretical and practical aspects.

The solution for a single elliptic inclusion is well known (see,
e.g., Ru and Schiavone, 1996, and the references therein). At the
same time, the analytical solutions for the interacting elliptic inclu-
sions are limited to a few. A certain progress is observed in the con-
ductivity problem where the multipole expansion solution has
been obtained for the finite (Yardley et al., 1999) and periodic
(Yardley et al., 2001; Kuo, 2010) arrays of elliptical cylinders. The
complete solutions for a finite array of elliptic inclusions in the
plane (Kushch et al., 2005) and half-plane (Kushch et al., 2006)
have been obtained by combining the multipole expansion ap-
proach with the Kolosov–Muskhelishvili’s technique of complex
potentials. This approach has been further developed and applied
to evaluation of the stress intensity factors (Kushch et al., 2009a)
and effective stiffness (Kushch et al., 2009b) of cracked solids.
The theory of the multipole expansion method in application to
the solids with elliptic inclusions is given in the book by Kushch
(2013). Among the available numerical studies on effective con-
ductivity of fiber composites, we mention the work by Lu (1994)
who applied the boundary collocation scheme for evaluating effec-
tive conductivity of the rectangular arrays of elliptic inclusions.
Byström (2003) studied the many-particle cell model for the peri-
odic and random structure composites with circular or elliptic
inclusions by the finite element method.

To our best knowledge, the elliptic fiber composites with imper-
fect interface never been addressed in the micromechanics literature.
The paper by Shen et al. (2000) who considered a single elliptic inclu-
sion with homogeneously imperfect interface is probably the only ef-
fort in this direction. The aim of our work is to close this gap by
developing the micromechanical model of elliptic fiber composite
for the conductivity and out-of-plane shear problems, able to take
into account microstructure of composite and interactions between
the inclusions with imperfect bonding to the matrix.

The outline of this paper is as follows. First, we formulate the
problem in terms of complex potentials. Second, a general solution
of the problem for a single, imperfectly bonded elliptic inclusion in
the inhomogeneous far field is derived and tested numerically.
Next, we incorporate this solution into a general scheme of the
multipole expansion method to get a complete solution for a rep-
resentative unit cell (RUC) model of elliptic fiber composite with
imperfect interface. By analytical averaging the local gradient
and flux fields, the exact finite form expression of the effective con-
ductivity tensor has been obtained. The effect of interface conduc-
tivity on the effective behavior of composite has been evaluated.
The background theory is provided in Appendices.

2. Governing equations in terms of complex variables

We consider a steady heat conduction in the unidirectional
elliptic fiber composite due to transverse heat flux. In this case,
the two-dimensional (2D) model is adequate to study the phenom-
enon. We assume both the matrix and fibers to be isotropic. The
governing equation is r � q ¼ 0, where q ¼ �krT is the heat flux
vector. Also, k is the thermal conductivity, T and rT is the temper-
ature and its gradient, respectively. In the case of constant k; T
obeys Laplace equation r2T ¼ 0.

Our analysis employs the technique of complex potentials (e.g.,
Muskhelishvili, 1953). In terms of the complex variable z ¼ x1 þ ix2

representing the position vector x ¼ x1; x2ð ÞT in Ox1x2 plane,
Laplace equation reduces to

r2T ¼ @2T
@z@�z

¼ 0:

The temperature T and complex heat flux q ¼ q1 þ iq2 are ex-
pressed in terms of the complex potential uðzÞ as

T ¼ ReuðzÞ; q ¼ q1 þ iq2 ¼ �ku0ðzÞ: ð1Þ

Here and below, prime denotes differentiation with respect to the
whole argument and over-bar denotes the complex conjugate.

The mathematically equivalent mechanical problem in the 2D
elasticity theory is out-of-plane shear, where u3 is the only non-
zero component of displacement vector u:

u1 ¼ u2 ¼ 0; u3 ¼ wðx1; x2Þ:

In this case, two non-zero components of the stress tensor are r13

and r23. The stress equilibrium equation r � r ¼ 0 takes the form

@r13

@x1
þ @r23

@x2
¼ 0; ð2Þ

the Hooke’s law reduces to

ri3 ¼ 2lei3 ¼ l@w=@xi; i ¼ 1;2: ð3Þ

It follows from Eqs. (2) and (3) that r2w ¼ 0 whereas the strain
compatibility condition

@e13

@x2
¼ @e23

@x1
¼ 1

2
@2w
@x1@x2

is obeyed identically. This problem is readily reformulated in terms
of the complex potentials (Muskhelishvili, 1953). For w ¼ ReuðzÞ,
Eq. (3) takes the form analogous to Eq. (1): namely, the complex
stress r ¼ r13 þ ir23 ¼ lu0ðzÞ. Hence, the conductivity problem
we consider below can be also interpreted in the mechanical con-
text as the out-of-plane shear of elastic fibrous composite, with re-
place T to w; ð�kÞ to l and q to r.

3. Single inclusion in an inhomogeneous far field

3.1. The problem statement

Consider an unbounded plane, or matrix, containing a single
elliptic inclusion. All the matrix- and inclusion-related quantities
are indexed by ‘‘0’’ and ‘‘1’’, respectively: T ¼ T ð0Þ and k ¼ k0 in
the matrix, T ¼ Tð1Þ and k ¼ k1 in the inclusion. To describe geom-
etry of the problem, we introduce the Cartesian coordinate frame
Ox1x2 so that its origin coincides with the centroid of ellipse
whereas the Ox1 and Ox2 axes are directed along the major and
minor axes of the ellipse. An aspect ratio of the ellipse is
e ¼ l2=l1, where l1 and l2 are the major and minor, respectively,
semi-axes of the ellipse; its area S1 ¼ pl1l2. Another derivative
geometric parameter to be used in our analysis is the inter-foci

distance 2d, where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 � l2

2

q
.

Alongside with conventional complex variable z ¼ x1 þ ix2, we
will use the ‘‘elliptic’’ complex variable n ¼ fþ ig introduced
(e.g., Sneddon and Berry, 1958) as

z ¼ d cosh n ¼ d
2
ðtþ t�1Þ; t ¼ exp n: ð4Þ

In fact, Eq. (4) defines an elliptic coordinate frame with f and g as
‘‘radial’’ and ‘‘angular’’ coordinates, respectively. In particular, the
coordinate curve f ¼ f0 specified by the condition

f0 ¼ ln
l1 þ l2

d

� �
¼ 1

2
ln

1þ e
1� e

� �
ð5Þ

coincides with the boundary of elliptic inclusion. Also, we denote
t0 ¼ exp f0. It is important that at this boundary the functions
tk ¼ tk

0 exp ikg depend only on the angular coordinate g. This fact
makes the complex variable n particularly useful for the domains
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