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a b s t r a c t

A method for determining the in situ strength of fiber-reinforced laminas for three types of transverse
loading including compression, tension and shear is presented. In the framework of this method, an anal-
ysis of local stresses that are responsible for the coalescence of matrix cracks is carried out by using a
multi-fiber unit cell model and finite element method. The random distribution of fibers, fiber–matrix
decohesion and matrix plastic deformations are taken into account in the micromechanical simulations.
The present study also shows that the nonlinear hardening behavior of matrix reflects more realistically
the influence of plastic deformations on the in situ transverse strength of lamina than the perfectly plastic
behavior of matrix. The prediction of the in situ transverse strength is verified against the experimental
data for a cross ply laminate subjected to uniaxial tension.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When a fiber-reinforced polymer–matrix composite lamina is
subjected to transverse loading, it fails due to matrix cracking.
The physics of matrix cracking at the microscopic level is related
to the appearance of fiber/matrix debonding, small cracks and
plastic deformation within the matrix (Gonzalez and LLorca,
2007; Hobbiebrunken et al., 2006). For an isolated lamina, the ini-
tiation of the first matrix cracks indicates fracture of the lamina.
This process happens differently when the lamina is embedded
in a laminate. Since other laminas in a laminate retard the propa-
gation of the matrix cracks, the stiffness of cracked lamina does not
drop suddenly but declines gradually with increasing load. In this
case, the strains to failure are larger than those of an isolated lam-
ina. Calculation of the laminate stiffness reduction due to matrix
cracking can be made by using progressive damage analysis at var-
ious scales (from the scale of the fiber to scale of the structure).
Typically, matrix cracking is studied at the ply scale by using a unit
cell which is a representative of the whole laminate. In each lam-
ina, a measure of damage is the crack density which grows until
the lamina is saturated with cracks. A number of mesoscale models
for cross-ply laminates have been proposed in the literature in or-
der to predict the degradation of the stiffness due to matrix crack-
ing (see for example, Nairn, 1989; McCartney, 1998; Barbero and

Cortes, 2010; Lubineau, 2010). This paper presents an alternative
approach for matrix cracking based on a unit cell of a single lamina.
In this case, a measure of damage is plastic deformation of the ma-
trix which leads to matrix cracking

The reduction of lamina stiffness due to matrix cracking can be
determined at the fiber scale by using computational microme-
chanics. Most of the literature on this subject, such as papers by
Llorca and co-workers (2007, 2008), Vaughan and McCarthy
(2011a,b) focuses on the study of the influence of matrix and inter-
face properties on the macroscopic response of lamina. In these pa-
pers, the authors have proved the utility of unit cell models with
random fiber arrangement in determining the transverse strength
of isolated laminas. However, they have provided no prediction of
the critical damage threshold in polymer matrices. Further devel-
opment of this approach is to be found in papers by Melro et al.
(2013), Yang et al. (2012), who have applied more complex consti-
tutive laws of the matrices to trace the damage evolution in iso-
lated laminas up to final failure. Although these studies have
substantially contributed to our understanding of the failure
behavior of unidirectional laminas under transverse loading, the
constraining effects of other laminas have been less recognized.
Modeling of matrix cracking initiation and evolution in cross ply
composite laminates subjected to in-plane shear through multi-
fiber unit cells has recently been presented by Totry et al. (2009),
Ng et al. (2010), Soni et al. (2014). In these papers, the authors
found the in-plane shear stress–strain response of laminates by
averaging the shear responses of plies. Although they have success-
fully established methodology for modeling of cross ply composite
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laminates, they have not considered the coalescence of matrix
cracks that corresponds to the first ply failure.

The main objective of this paper is to present a simple proce-
dure based on the use of the unit cell with random fiber arrange-
ment and the finite element method to predict the load at which
the first lamina embedded in a laminate fails. For this purpose,
an analysis of the hoop stresses that are responsible for the coales-
cence of the matrix cracks is carried out in the present paper. To
find the in situ strength of lamina, the criterion of maximum hoop
stress in matrix is used locally for the most loaded fiber. The first
ply failure load predicted from proposed method is verified against
the experimental data for a cross ply laminate subjected to uniaxial
tension.

Another objective of this paper is to assess whether, and to
what extent, the transverse failure behavior of lamina is sensitive
to the hardening of matrix due to plastic deformation. Most of
the numerical simulations on the mechanical behavior of compos-
ite laminas under transverse loading are based on an assumption
that polymer matrices can be represented by an elastic-perfectly
plastic solid following the one of the pressure-sensitive yield crite-
rions. Although this simple model of plasticity is able to reproduce
the localization of damage along a narrow fracture path, it leads to
the overestimation of the plastic deformation because, in reality, a
polymer matrix hardens and its ductility decreases. An alternative
approach is to consider in situ properties of the matrix that are
back-calculated from experimental data of the lamina. The role of
the in situ properties of matrix in modeling the matrix cracking
failure mode remains unexplored and therefore is also undertaken
in this paper.

2. Micromechanical models

Numerical simulations using a concept of the unit cell with ran-
dom fiber arrangement are a current trend of work in computa-
tional micromechanics. The benefit of the use of such unit cells is
that the effect of fiber array irregularities on transverse responses
of composite can be accurately taken into account. In this paper,
the unit cell models of randomly distributed fiber composite are
generated using Wongsto and Li’s algorithm (Wongsto and Li,
2005). Analyses were made on models that contained 39 fibers.
The data required for the simulation study were taken from the
world wide failure exercise WWFE (Soden et al., 1998) for an
example case of E-glass/MY750/HY917/DY063 lamina with the fi-
ber volume content of 60%. The properties of this material and
its constituents are listed in Table 1. Two-dimensional finite ele-
ment meshes that mainly consisted of plane strain elements with
four nodes (PLANE182) were constructed by using ANSYS finite
element code. To ensure accurate displacement and stress field
representation within each unit cell, sufficiently dense meshes
comprising of approximately 45,000 elements were used. A cohe-
sive layer consisted of contact elements with four nodes (CON-
TA172, TARGE169) was introduced between the fibers and the

matrix to reproduce the fiber–matrix debonding. Each fiber/matrix
interface contained 100 contact elements equally spaced around
the circumference. Previous works by Vaughan and McCarthy
(2011a,b) have shown that this finite element topology gives con-
verged solutions.

2.1. Numerical homogenization technique

In this paper, the effect of the matrix ductility has been studied
for the selected lamina subjected to three types of transverse load-
ing including compression, tension and shear. For each loading
type, periodic boundary conditions were imposed on the unit cell
to reflect the repeatability of the microstructure and to ensure
the compatibility of the displacement fields. By the assumption
of periodicity, each displacement field ui may be decomposed in
a part associated with the applied strain eij and a periodic one up

i

(Suquet, 1987)

uiðx1; x2Þ ¼ eijxj þ up
i ðx1; x2Þ ð1Þ

These relations are implemented at each periodic pair of nodes
to link the displacements of the top and the bottom boundaries and
the displacements of the right and left boundaries of the unit cell.
Because of a huge number of nodes at the opposite boundary
edges, a Ansys APDL macro has been used to generate automati-
cally all required constraint conditions (1). The normal r2 and
shear s23 stresses corresponding to the applied strains e2 and
2e23 were computed from the resultant normal and tangential
forces acting on the edges divided by the actual cross-section.

2.2. Constitutive equations of matrix and interface

Although the extension of plastic strain zones in polymer matri-
ces is inhibited by the nearest fibers, they can exhibit considerable
plastic deformation between the fibers (Fiedler et al., 2001;
Hobbiebrunken et al., 2007). This is because when the probability
of finding defects (e.g., voids, microcracks) is low, the glassy poly-
mers like epoxy can deform plastically. It is well known that the
presence of defects induces a triaxial stress state which reduces lo-
cally the ductility of material. Thus, when the size scale is de-
creased, the failure behavior of epoxy changes from brittle to
ductile. The epoxy matrix is therefore modeled within the frame-
work of the finite deformations as a elasto-plastic solid which
hardens isotropically. It is widely accepted, nowadays, that the
deformation of polymeric materials is highly sensitive to the
hydrostatic pressure and plastic flow of these materials can exhibit
plastic dilatancy. To address this requirement, the Drucker–Prager
plasticity model (Drucker and Prager, 1952), which incorporates
the linear dependence on the hydrostatic stress, is used. In terms
of the first invariant of stress I1 and the second invariant of the
deviatoric part of stress J2, the yield function is given as

f ¼ ðlI1=3Þ þ sqrtðJ2Þ � k; ð2Þ

where l is the pressure sensitivity factor, k is the flow stress of the
material under pure shear. Experiments showed that the pressure-
sensitivity factor l ranges from 0.10 to 0.25 for polymers (Kinloch
and Young, 1983; Quinson et al., 1997). Note, that if l = 0, Eq. (2)
reduces to the von Mises yield function. The Drucker–Prager plas-
ticity model with l = 0.1 and k = 43.30 MPa was used to study the
role of the matrix ductility in the matrix cracking failure mode.
An associative flow rule is used to compute the direction of plastic
flow. More details regarding the flow rule may be found in Ansys
theory manual (Ansys, 2012).

For the fiber/matrix interface failure, the cohesive zone model is
employed, in which the constitutive equations of the interface re-
late the normal rn and tangential st cohesive tractions to the

Table 1
Mechanical properties of the unidirectional lamina and its constituents.

E-glass fiber MY750 epoxy matrix lamina

Ef mf Em mm k l e2T e2C r2T r2C Vf

[GPa] [GPa] [MPa] [%] [%] [MPa] [MPa] [%]

74 0.2 4 0.35 43.35 0.1 0.246 1.2 40 145 60

Fiber–matrix interface

kn kt Gc
n Gc

t rc
n sc

t

[GPa/m] [GPa/m] [J/m2] [J/m2] [MPa] [MPa]
0.1 � 109 0.1 � 109 15 30 30 60
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