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a b s t r a c t

Of interest here is the influence of loading rate on the stability of structures where inertia is taken into
account, with particular attention to the comparison between static and dynamic buckling. This work
shows the importance of studying stability via perturbations of the initial conditions, since a finite veloc-
ity governs the propagation of disturbances. The method of modal analysis that determines the fastest
growing wavelength, currently used in the literature to analyze dynamic stability problems, is meaning-
ful only for cases where the velocity of the perfect structure is significantly lower than the associated
wave propagation speeds.

As a model structure to illustrate this point we select an elastic ring subjected to external hydrostatic
pressure which is applied at different rates � (appropriately non-dimensionalized with respect to elastic
axial wave speed). The ring’s stability is studied by following the evolution of a localized small perturba-
tion. It is shown that for small values of the applied loading rate, the structure fails through a global
mode, while for large values of the applied loading rate the structure fails by a localized mode of defor-
mation. An analytically obtained localization time tl is found to be a very good estimate of the onset of
instability time at high loading rates.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The issue of dynamic stability of structures is an important
engineering problem and as such has drawn considerable atten-
tion. The first investigation in this area appears to be the work of
Koning and Taub (1933), who investigated the influence of inertia
in a simply supported imperfect column subjected to a sudden ax-
ial load. A substantial amount of work followed that investigated
the response of, mainly elastic, structures to impulse or time-
dependent loads. As a result, and due to the many possible defini-
tions for the stability of time-dependent systems, the term dynamic
stability encompasses many classes of problems and different
physical phenomena and has many interpretations, with inertia
being the only common denominator.

In the absence of inertia, the processes of failure by a bifurcation
instability mode in elastic solids and structures is well understood
(e.g. Brush and Almroth, 1975) and a general asymptotic analysis,
termed Lyapunov–Scmidt–Koiter (LSK), has been developed for
their study. The first effort to use the LSK general analysis for the

dynamic stability problem of an elastic structure appears to be
Budiansky and Hutchinson (1964), where the authors proposed
an asymptotic analysis of the time-dependent problem using the
eigenmodes of the static problem. Alternative methods, based on
upper and lower bounds of the structure’s energy have also been
proposed and the interested reader is referred to Chapter 12 in
Simitses and Hodges (2006) for a well written account of this
approach.

Another idea, popular in fluid mechanics, has also been adopted
for the dynamic stability analysis of solids with more general con-
stitutive laws under high rates of loading, according to which one
seeks the solid’s fastest growing eigenmode. This type of analysis is
also termed the method of frozen coefficients, since the resulting
PDE system of the linearized stability equations become autono-
mous by virtue of ignoring the time-independence of their coeffi-
cients. This method has been repeatedly applied in the study of
dynamic stability of elastoplastic bars and rings under high loading
rates where the size of fragments is of interest (e.g. see Shenoy and
Freund, 1999; Sorensen and Freund, 2000; Mercier and Molinari,
2003). However, recent experimental evidence from rapidly
expanding electromagnetically loaded metallic rings by Zhang
and Ravi-Chandar (2006, 2008) finds no evidence of a dominant
wavelength at the necked pattern of the rings. As explained by
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these authors, using the fastest growing eigenmode to predict the
onset of failure is physically meaningful provided that the loading
rate is much slower than the speed of propagation of perturbations
in the solid or structure at hand. For high loading rates, commen-
surate with some characteristic wave propagation speed in the
structure, a novel approach to the stability analysis is required,
namely the study of evolution of localized perturbations.

In contrast to the above mentioned cases of structures under ra-
pid extension, of particular interest in this work is the influence of
loading rate on the stability of structures under compression that
exhibit an instability even under quasistatic loading. As a model
structure to illustrate these ideas, we select an elastic ring sub-
jected to external hydrostatic pressure which is applied at different
rates � (appropriately non-dimensionalized with respect to elastic
axial wave speed). Of course such a classical topic has been treated
repeatedly in the mechanics literature; following the work of Car-
rier (1945), different linear and nonlinear versions of the ring
dynamical equations of increasing complexity have been proposed
(e.g. Morley, 1961; Goodier and McIvor, 1964; Boresi and Reichen-
bach, 1967; Wah, 1970; Graff, 1971; Simmonds, 1979; Dempsey,
1996) to study their vibrations. The stability of rings subjected to
impulsive or step loadings has also been repeatedly studied (e.g.
Goodier and McIvor, 1964; Lindberg, 1964; Florence, 1968; Ander-
son and Lindberg, 1968a; Lindberg, 1974; Simmonds, 1979;
Lindberg and Florence, 1987; Amabili and Paidoussis, 2003). These
studies rely on modal analysis using Fourier series whose trunca-
tion leads nonlinear amplitude equations and showed that
dynamic buckling is triggered by flexural modes. At leading order,
the dynamics of flexural modes are governed by Mathieu-Hill
equations whose characteristic curves of associated Mathieu
functions delineate boundaries of instability domains within the
control parameter plane of load versus ring’s slenderness. For an
account of dynamic stability problems in rings, the interested
reader is referred to the book Graff (1975) and references quoted
therein.

All the above-mentioned works were concerned with the stabil-
ity of ring vibrations and not with their stability at high loading
rates as is the case of interest here. Our investigation is further
motivated by work involving rings high strain-rate using electro-
magnetic loading – since this method avoids propagating waves
– under tension (Gourdin, 1989; Triantafyllidis and Waldenmyer,
2004; Zhang and Ravi-Chandar (2006); Zhang and Ravi-Chandar
(2008)) that study the influence of high loading rate on metal duc-
tility and in particular by experiments in ring and cylinder under
electromagnetic compression by Anderson and Lindberg (1968b)
and Jones and Okawa (1976), since these experiments combine
structural instability with rapid loading. It is the most recent
experimental work of Mainy (2012) that serves as the starting
point for this investigation, and in particular the localized failure
patterns observed (see Fig. 1), which are in marked contrast with
global buckling modes of externally pressurized rings under quasi-
static loading rates. In order to keep essential features such as
buckling under static loading and finite wave speeds for all wave-
numbers, we concentrate on the dynamics of an elastic ring follow-
ing a von Karman – Timoshenko theory allowing for small strains,
moderate rotations, transverse shear and rotational inertia. The
ring’s stability is studied by following the evolution of a localized
small perturbation. It is shown that for small values of the applied
loading rate the structure fails through a global mode, while for
large values of the applied loading rate the structure fails by a
localized mode of deformation. Following Section 1 the presenta-
tion of the work continues with Section 2, where we derive the
equations of motion and outline the numerical scheme for the
solution of these equations. The results are given in Section 3
where we present the linearized analysis of the initial growth/de-
cay of a perturbation followed by numerical calculations of the

evolution of a spatially localized displacement perturbation and a
discussion in Section 4 concludes this work.

2. Formulation

In the first subsection we derive the equations of motion from
Hamilton’s variational principle, from which we deduce the struc-
ture’s Euler–Lagrange equations. The numerical scheme for the
solution of these equations is outlined in the second subsection.

2.1. Equations of motion

We consider a homogeneous linear elastic ring of rectangular
section with thickness h, width a and cross sectional area
A ¼ h� a. The ring has a mid-line radius r and follows small strain
– moderate rotation Timoshenko kinematics described by
~vðhÞ; ~wðhÞ; ~wðhÞ respectively the tangential and normal displace-
ments of the ring’s reference mid-line at point h and the rotation of
the section perpendicular to the mid-line, initially at h (see Fig. 1).

To find the system’s Lagrangian, we need to determine its po-
tential and kinetic energies P and K respectively. The potential en-
ergy P consists of two parts: the stored elastic energy Pint plus Pext

the work potential of the externally applied uniform pressure ~k,
namely

P ¼ Pint þ Pext: ð1Þ

The stored elastic energy Pint is
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Z 2p
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with f 0 � @f=@h denoting the h-derivative of the corresponding func-
tion and E;G the material’s Young and shear moduli, respectively.

The kinematic and stress state assumptions leading to (2) and
(3) are that cross-sections perpendicular to the initial middle line
deform as planes, the ring is in the state of an approximate uniaxial
stress rhh ¼ Eehh, strains are small but rotations are moderate and
that shear stress rrh ¼ Gcrh although negligible compared to rhh

does contribute to the ring’s elastic energy.
By inserting (3) into (2) and integrating through the thickness,

the following expression is obtained for the internal energy
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where I ¼ ah3
=12 is the cross sectional moment of inertia and v the

shear correction factor (v ¼ 2=3 for a rectangular section, the en-
ergy expression in (4) being valid for arbitrary cross sections with
appropriate A and I expressions). For the thin rings of interest here,
it is tacitly assumed that the radius of the mid-line r � h.

The work potential Pext of the external pressure loading ~k ap-
plied on the ring equals ~kDS where DS is the change of area due
to deformation ð~v ; ~wÞ enclosed by the ring’s mid-line, which is gi-
ven by e.g. Brush and Almroth (1975)

Pext ¼ ~k
Z 2p

0
~wþ 1

2r
~v2 � ~v ~w0 þ ~v 0 ~wþ ~w2
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rdh; ð5Þ

where ~k is taken positive when acting inwards (resulting in com-
pressive hoop stresses rhh < 0) in the ring.
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