
Exact electroelastic analysis of functionally graded piezoelectric shells

G.M. Kulikov ⇑, S.V. Plotnikova
Department of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street, 106, Tambov 392000, Russia

a r t i c l e i n f o

Article history:
Received 8 May 2013
Received in revised form 24 August 2013
Available online 11 September 2013

Keywords:
Functionally graded piezoelectric shell
Electroelasticity
3D exact solutions
Cross-ply and angle-ply shells
Sampling surfaces method

a b s t r a c t

A paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D)
exact solutions for functionally graded (FG) piezoelectric laminated shells. According to this method, we
introduce inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell and
choose displacements and electric potentials of these surfaces as basic shell variables. Such choice of
unknowns yields, first, a very compact form of governing equations of the FG piezoelectric shell formu-
lation and, second, allows the use of strain–displacement equations, which exactly represent rigid-body
motions of the shell in any convected curvilinear coordinate system. It is worth noting that the SaS are
located inside each layer at Chebyshev polynomial nodes that leads to a uniform convergence of the
SaS method. As a result, the SaS method can be applied efficiently to 3D exact solutions of electroelastic-
ity for FG piezoelectric cross-ply and angle-ply shells with a specified accuracy by using a sufficient num-
ber of SaS.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last two decades, a considerable work has been carried
out on the three-dimensional (3D) exact analysis of piezoelectric
laminated shells. In the literature, there are at least five approaches
to 3D exact solutions of electroelasticity for piezoelectric shells,
namely, the Pagano approach (Vlasov, 1957; Pagano, 1969), the
state space approach, the series expansion approach, the asymp-
totic approach and the sampling surfaces (SaS) approach. The first
four approaches are discussed and critically assessed in a survey
article (Wu et al., 2008). Very recently, the SaS approach has been
also applied to 3D exact solutions for piezoelectric laminated
plates and shells by Kulikov and Plotnikova (2013b,c).

The functionally graded (FG) piezoelectric materials are at pres-
ent widely used in mechanical engineering due to their advantages
compared to traditional laminated piezoelectric materials (Birman
and Byrd, 2007). At the same time, the analysis of FG piezoelectric
shells is not a simple task because the material properties depend
on the transverse coordinate and some specific assumptions con-
cerning their variations in the thickness direction are required
(Reddy and Cheng, 2001; Zhong and Shang, 2003). This implies that
first three approaches, i.e., the Pagano approach, the state space
approach and the series expansion approach cannot be applied
directly to 3D exact solutions for FG piezoelectric shells. However,
this becomes possible if the shell is artificially divided into a large
number of individual layers (Soldatos and Hadjigeorgiou, 1990)
with constant material properties through the thickness (Wu and

Liu, 2007; Wu and Tsai, 2012). The use of such a technique means
that 3D solutions derived are approximate. On the contrary, the
asymptotic approach (Wu and Syu, 2007) and the SaS approach
(Kulikov and Plotnikova, 2013d) yield the exact results because
governing differential equations in both approaches are obtained
through definite integration in the thickness direction of a shell.

This paper is intended to show that the SaS method can be also
applied efficiently to 3D exact solutions of electroelasticity for FG
piezoelectric laminated shells. In accordance with this method,
we choose inside the nth layer In not equally spaced SaS
XðnÞ1;XðnÞ2; . . . ;XðnÞIn parallel to the middle surface of the shell and
introduce the displacement vectors uðnÞ1;uðnÞ2; . . . ;uðnÞIn and the
electric potentials uðnÞ1;uðnÞ2; . . . ;uðnÞIn of these surfaces as basic
shell variables, where In P 3. Such choice of unknowns with the
consequent use of Lagrange polynomials of degree In � 1 in the
thickness direction for each layer leads to a very compact form of
governing equations of the FG piezoelectric shell formulation.
Moreover, the proposed approach gives an opportunity to utilize
the strain–displacement equations, which describe exactly all ri-
gid-body shell motions in any convected curvilinear coordinate
system (Kulikov and Plotnikova, 2013a). Although the SaS method
has been already applied efficiently to the exact analysis of elastic
and piezoelectric shells (Kulikov and Plotnikova, 2012, 2013a,c),
the application of this method to FG shells cannot be found in
the current literature. Note also that an idea of using the SaS can
be traced back to papers (Kulikov, 2001; Kulikov and Carrera,
2008) in which three, four and five equally spaced SaS are
employed. In these contributions, the Lagrange polynomials are
utilized to derive approximate solutions of 3D shell problems. For
further information concerning the approximate solution of 3D
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electroelastic shell problems the reader refers to Carrera et al.
(2011) where the Legendre polynomials in the thickness direction
are employed.

It is necessary to mention that the proposed approach with
equally spaced SaS (Kulikov and Plotnikova, 2011) does not work
properly with Lagrange polynomials of high degree because the
Runge’s phenomenon can occur, which yields the wild oscillation
at the edges of the interval when the user deals with any specific
functions. If the number of equally spaced nodes is increased then
the oscillations become even larger. However, the use of Cheby-
shev polynomial nodes inside each layer can help to improve sig-
nificantly the behavior of Lagrange polynomials of high degree
for which the error will go to zero as In !1.

The authors restrict themselves to finding five right digits in all
examples presented. To achieve a better accuracy, the more SaS in-
side each layer should be taken.

2. Kinematic description of laminated shell

Consider a thick laminated shell of the thickness h. Let the mid-
dle surface X be described by orthogonal curvilinear coordinates h1

and h2, which are referred to the lines of principal curvatures of its
surface. The coordinate h3 is oriented along the unit vector e3 nor-
mal to the middle surface. Introduce the following notations: ea are
the orthonormal base vectors of the middle surface; Aa are the
coefficients of the first fundamental form; ka are the principal cur-
vatures of the middle surface; cðnÞina ¼ 1þ kah

ðnÞin
3 are the compo-

nents of the shifter tensor at SaS; hðnÞin3 are the transverse
coordinates of SaS inside the nth layer given by

hðnÞ13 ¼ h½n�1�
3 ; hðnÞIn

3 ¼ h½n�3 ;

hðnÞmn
3 ¼ 1

2
h½n�1�

3 þ h½n�3

� �
� 1

2
hn cos p 2mn � 3

2ðIn � 2Þ

� �
; ð1Þ

where h½n�1�
3 and h½n�3 are the transverse coordinates of layer inter-

faces X½n�1� and X½n� depicted in Fig. 1; hn ¼ h½n�3 � h½n�1�
3 is the thick-

ness of the nth layer.
Here and in the following developments, the index n identifies

the belonging of any quantity to the nth layer and runs from 1 to
N, where N is the number of layers; the index mn identifies the
belonging of any quantity to the inner SaS of the nth layer and runs
from 2 to In � 1, whereas the indices in, jn, kn describe all SaS of the
nth layer and run from 1 to In; Greek indices a; b range from 1 to 2;
Latin tensorial indices i; j; k; l range from 1 to 3.

It is seen from (1) that transverse coordinates of inner SaS coin-
cide with coordinates of Chebyshev polynomial nodes (Burden and
Faires, 2010). This fact has a great meaning for a convergence of the
SaS method (Kulikov and Plotnikova, 2012, 2013a).

The strain tensor at SaS of the nth layer in a reference surface
frame ei (see, e.g. Kulikov and Plotnikova, 2013c) can be written
as follows:

2eðnÞinab ¼ 1

cðnÞinb

kðnÞinab þ
1

cðnÞina
kðnÞinba ; ð2Þ

2eðnÞina3 ¼ bðnÞina þ 1

cðnÞina
kðnÞin3a ; ð3Þ

eðnÞin33 ¼ bðnÞin3 : ð4Þ

Here, kðnÞinia are the strain parameters of SaS defined as

kðnÞinaa ¼ 1
Aa

uðnÞina;a þ BauðnÞinb þ kauðnÞin3 for b–a; ð5Þ

kðnÞinba ¼ 1
Aa

uðnÞinb;a � BauðnÞina for b–a; ð6Þ

kðnÞin3a ¼ 1
Aa

uðnÞin3;a � kauðnÞina ; Ba ¼
1

AaAb
Aa;b for b–a; ð7Þ

where uðnÞini ðh1; h2Þ are the displacements of SaS; bðnÞini ðh1; h2Þ are the
derivatives of displacements with respect to thickness coordinate at
SaS given by

uðnÞini ¼ ui hðnÞin3

� �
; ð8Þ

bðnÞini ¼ ui;3 hðnÞin3

� �
; ð9Þ

where ui are the components of the 3D displacement vector in a ref-
erence surface frame ei, which is always measured in accordance
with the total Lagrangian formulation from the initial configuration
to the current configuration directly.

Now, we start with the first assumption of the proposed piezo-
electric laminated shell formulation. Let us assume that the dis-
placements of the nth layer uðnÞi are distributed through the
thickness as follows:

uðnÞi ¼
X

in

LðnÞin uðnÞini ; h½n�1�
3 6 h3 6 h½n�3 ; ð10Þ

where LðnÞin ðh3Þ are the Lagrange polynomials of degree In � 1
expressed as

LðnÞin ¼
Y

jn–in

h3 � hðnÞjn3

hðnÞin3 � hðnÞjn3

: ð11Þ

Using relations (9) and (10) one obtains

bðnÞini ¼
X

jn

MðnÞjn hðnÞin3

� �
uðnÞjni ; ð12Þ

where MðnÞjn ¼ LðnÞjn;3 are the derivatives of Lagrange polynomials. The
values of these derivatives at SaS are calculated as

MðnÞjn hðnÞin3

� �
¼ 1

hðnÞjn3 � hðnÞin3

Y
kn–in ;jn

hðnÞin3 � hðnÞkn
3

hðnÞjn3 � hðnÞkn
3

for jn–in;

MðnÞin hðnÞin3

� �
¼ �

X
jn–in

MðnÞjn hðnÞin3

� �
: ð13Þ

It is seen that the key functions bðnÞini of the laminated shell for-
mulation are represented according to (12) as a linear combination
of displacements of SaS of the nth layer uðnÞjni .

The following step consists in a choice of the correct approxi-
mation of strains through the thickness of the nth layer. It is appar-
ent that the strain distribution should be chosen similar to theFig. 1. Geometry of the laminated shell.
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