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a b s t r a c t

This paper presents an exact closed-form solution for the Eshelby problem of a polygonal inclusion with
graded eigenstrains in an anisotropic piezoelectric half plane with traction-free on its surface. Using the
line-source Green’s function, the line integral is carried out analytically for the linear eigenstrain case,
with the final expression involving only elementary functions. The solutions are applied to the semicon-
ductor quantum wire (QWR) of square, triangular, and rectangular shapes, with results clearly illustrating
various influencing factors on the induced fields. The exact closed-form solution should be useful to the
analysis of nanoscale QWR structures where large strain and electric fields could be induced by the
non-uniform misfit strain.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Eshelby problem (Eshelby, 1957, 1961) has been an interesting
topic in various engineering and material fields for more than
50 years, and is the subject of constant studies (Willis, 1981; Mura,
1987). Some of the previous studies include the effective
elastoplastic behavior of composites (Ju and Sun, 2001), and dy-
namic Eshelby tensor of ellipsoidal inclusions (Michelitsch et al.,
2003), among others. Although most Eshelby problems in isotropic
elasticity can be solved analytically for both two-dimensional (2D)
and three-dimensional (3D) deformations (see, e.g. Kouris and
Mura, 1989), solution to the corresponding anisotropic elasticity
is still a challenging and attractive topic. For a transversely isotro-
pic elasticity problem an analytical solution can be obtained (Yu
et al., 1994), whilst in an anisotropic elasticity it is usually solved
numerically (Dong et al., 2003). As a typical application of the
Eshelby solution, it is effective to study the semiconductor proper-
ties for efficient device design. However, different from simple
isotropic elastic materials, most semiconductor materials show
both anisotropic and piezoelectric properties, with some of them
being strongly electromechanically coupled (Pan, 2002). For piezo-
electric Eshelby inclusion problems, most reported analytical solu-
tions concerned with elliptical/ellipsoidal shapes only (Wang,
1992; Chung and Ting, 1996). In real applications, however, the

Eshelby problem with arbitrarily shaped inclusion is particularly
useful in the study of the strained semiconductor quantum devices
(Freund and Gosling, 1995; Andreev et al., 1999). In the work of Ru
(1999), analytical solutions for Eshelby inclusion of arbitrary shape
were derived based on the conformal mapping which maps the
exterior of a unit circle onto the exterior of the inclusion. This
method is elegant and convenient for the inclusion with smooth
boundary. In the work of Pan (2004), the Green’s function solutions
were adopted with the final solution involving only elementary
functions, which is particularly suited for a polygonal inclusion.
The perturbation method can also be applied to handle the elastic
material anisotropy and arbitrary shape of an inclusion (Wang and
Chu, 2006). Zou et al. (2011) applied the extended Stroh formalism
to an Eshelby problem of 2D arbitrarily shaped piezoelectric inclu-
sion, which is actually very powerful in treating 2D anisotropic
problems. Inclusion of an arbitrary shape with uniform eigen-
strains in magnetoelectroelastic bimaterial planes was also inves-
tigated (Jiang and Pan, 2004; Zou and Pan, 2012).

We point out that in most of the previous studies, the eigen-
strain within the inclusion was assumed to be uniform, which
could be very limited because in most semiconductor materials,
the eigenstrain shows non-uniform distribution. Thus, the effect
of non-uniform eigenstrain on the induced field is particularly
interesting. Eshelby (1961) showed that if the eigenstrain inside
an ellipsoidal inclusion in an infinite domain is in the form of a
polynomial, then the induced-strain field in the inclusion is also
characterized by a polynomial of the same order. Other types of
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non-uniform eigenstrain were also considered, including an
ellipsoidal inclusion with dilatational Gaussian and exponential
eigenstrains (Sharma and Sharma, 2003), and an ellipsoidal or
elliptic inclusion with linear and polynomial distributions of
eigenstrain (Rahman, 2002; Nie et al., 2007; Guo et al., 2011).
Recently, Sun et al. (2012) solved the Eshelby inclusion problem
of an arbitrary polygon with a linear eigenstrain in an
anisotropic piezoelectric full plane via the Green’s function
method.

In most engineering applications, the size of the substrate
would be finite. Liu (2010) studied the 2D periodic inclusion
problem in a finite cell and obtained the solution to the problem
in terms of Cauchy-type integrals. Using the Somigliana’s identity
and Green’s functions in classical elasticity, analytical solution of
the Eshelby tensors of a spherical inclusion embedded concentri-
cally within a finite sphere can be derived (Li et al., 2007). Mejak
(2011) obtained the Eshelby tensors for a spherical inclusion
within a finite spherical body by power series approximation.
Ma and Gao (2011) extended the classical elasticity to strain
gradient elasticity theory. Zou et al. (2012) proposed a general
approach based on the principle of superposition to study the
problem of a finite elastic body with an arbitrarily shaped
inclusion. Although the half-plane piezoelectric problem of an
arbitrarily shaped inclusion was investigated before (Ru, 2003;
Wang and Pan, 2010), solution to the inclusion problem with
non-uniform eigenstrain in an anisotropic piezoelectric half plane
remains to be solved.

In this paper, an exact closed-form solution for an arbitrarily
shaped polygonal inclusion in an anisotropic piezoelectric half
plane is presented, where the eigenstrain within the inclusion
can be not only uniform but also graded. Based on the equivalent
body force and by means of subdomain division, the eigenstrain
can be expressed as a linear graded function in every subregion.
Thus, we can express the induced elastic and piezoelectric fields
in terms of a line integral on the boundary of the inclusion, with
the integrand being the multiplication of the line-source Green’s
function and the equivalent body force of the piezoelectric solid.
The line integral can be carried out analytically assuming that
the inclusion is a polygon. The most remarkable feature is that
the final exact closed-form solution involves only elementary func-
tions, similar to the corresponding isotropic elastic solutions (Faux
et al., 1997; Nozaki and Taya, 1997; Glas, 2002a). Using our present
simple solutions, the piezoelectric field due to multiple inclusions
or an array of QWRs can be easily obtained by adding the contribu-
tions from all the QWRs. As numerical examples, our solution is ap-
plied to square, triangular, and rectangular QWRs within a GaAs
(001) half-plane substrate. Our numerical results clearly show
the obvious effects of graded eigenstrain distribution, depth, and
orientation of the embedded inclusion on the induced fields. When
a QWR is embedded sufficiently deep, our results reduce to the ex-
act closed-form solutions in a full plane (Sun et al., 2012). Further-
more, the piezoelectric field due to an elliptical inclusion can be
calculated by an inscribed polygon with a relatively large side
number and thus it should be an efficient and recommended meth-
od for the elastic and electric field analysis in nanoscale QWR
structures.

This paper is organized as follows: In Section 2, we derive an
exact closed-form solution in a piezoelectric half plane for a gen-
eral polygon under a linear eigenstrain in x and z. In Section 3,
we apply our solutions to a couple of inclusion problems within
a piezoelectric half-plane substrate with traction-free boundary
conditions. The effect of different non-uniform eigenstrains, dif-
ferent orientations of the polygon, and different embedded
depths of the QWR, along with certain interesting features in
the induced fields are discussed. Conclusions are drawn in
Section 4.

2. Solutions of inclusion problems in piezoelectric half-plane

Let us assume that there is a general inclusion with arbitrary
shape in an anisotropic piezoelectric half-plane (z < 0), and an
extended general eigenstrain c�Ij (i.e., the eigenstrain c�ij and
eigen-electric field E�j ) within the domain V bounded by its bound-
ary oV (Fig. 1). The eigenstrain is further assumed to be a linear
function of the coordinates (x,z). Our task is to find the eigen-
strain-induced field within and outside the QWR.

For a general eigenstrain c�Ij at x = (x,z) within the domain V, the
induced extended displacement at X = (X,Z) can be expressed
based on the method of superposition and equivalent body-force
concept. In other words, the response is an integral, over V, of
the equivalent body force in the square bracket below, multiplied
by the line-source Green’s function (Pan, 2004), i.e.,

uKðXÞ ¼ �
Z

V
uK

J ðx; XÞ½CiJLmc�LmðxÞ�;idVðxÞ ð1Þ

where uK
J ðx; XÞ is the J-th Green’s elastic displacement/electric po-

tential at x due to a line-force/line-charge in the K-th direction ap-
plied at X. Summation is assumed for repeated lowercase (from 1 to
3) and uppercase (from 1 to 4) indices.

Integrating by parts and noticing that the eigenstrain is nonzero
only in V, Eq. (1) can be written alternatively as

uKðXÞ ¼
Z

V
uK

J;xi
ðx; XÞCiJLmc�LmðxÞdVðxÞ ð2Þ

Since the eigenstrain can be expressed as a linear function of the
coordinates (x,z) (Sun et al., 2012):

c�LmðxÞ ¼ c�0Lm þ c�xLmxþ c�zLmz ð3Þ

Eq. (2) becomes

uKðXÞ ¼
Z

V
uK

J;xi
ðx; XÞCiJLm c�0Lm þ c�xLmxþ c�zLmz

� �
dVðxÞ ð4Þ

or

u0
KðXÞþux

KðXÞþuz
KðXÞ�

Z
V

uK
J;xi
ðx;XÞ CiJLmc�0LmþCiJLmc�xLmxþCiJLmc�zLmz

� �
dVðxÞ

ð5Þ

The involved area integrals can be easily transformed to the line
integrals along the boundary of the QWR by the Green formula:

u0
KðXÞ ¼ CiJLmc�0Lm

Z
@V

uK
J ðx; XÞniðxÞdSðxÞ ð6Þ

Fig. 1. A general inclusion problem in an anisotropic piezoelectric half-plane
(z < 0): a linear eigenstrain c�Ij (c�ij and �E�j ) within an arbitrarily shaped polygon.
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