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a b s t r a c t

A plane problem for an electrically conducting interface crack in a piezoelectric bimaterial is studied. The
bimaterial is polarized in the direction orthogonal to the crack faces and loaded by remote tension and
shear forces and an electrical field parallel to the crack faces. All fields are assumed to be independent
of the coordinate co-directed with the crack front. Using special presentations of electromechanical quan-
tities via sectionally-analytic functions, a combined Dirichlet–Riemann and Hilbert boundary value prob-
lem is formulated and solved analytically. Explicit analytical expressions for the characteristic
mechanical and electrical parameters are derived. Also, a contact zone solution is obtained as a particular
case. For the determination of the contact zone length, a simple transcendental equation is derived. Stress
and electric field intensity factors and, also, the contact zone length are found for various material com-
binations and different loadings. A significant influence of the electric field on the contact zone length,
stress and electric field intensity factors is observed. Electrically permeable conditions in the crack region
are considered as well and matching of different crack models has been performed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Active materials like piezoelectric ceramics are widely used as
functional parts of many engineering systems, including sensors,
transducers and actuators. However, existing micro-defects and
cracks can strongly influence their behavior and reduce their
strength. Very often, a crack contains air. Since the dielectric per-
meability of air is much less than that of piezoelectric material,
the electric field inside the crack can be about 1000 times higher
in magnitude than the applied remote electric field. Under such a
high local electric field, an air discharge may occur inside the crack
and the crack becomes a conducting one (Zhang and Gao, 2004).
Also, a very soft electrode embedded in a piezoelectric matrix
can often be considered as a conducting crack (Suo, 1993). Elec-
trode stratification or electrode-matrix debonding can often lead
to the appearance of conducting cracks. Therefore, studies of con-
ducting cracks are very important for a better understanding and
prediction of behaviour and failure of piezoelectric devices.

McMeeking (1987) solved the problem of an electric field
around a conducting crack in dielectrics. He found that local elec-
tric field at the tip of a conducting crack is high enough. A problem
of conducting crack in a homogeneous piezoelectric material was

considered by, Suo (1993), Ru and Mao (1999), and Zhang and
Gao (2004). For the case of electrostrictive materials, this problem
was studied by Beom (1999a,b). A conducting crack between two
different piezoelectric materials was considered by Beom and
Atluri (2002) in the framework of the open crack model.

However, for some combinations of electromechanical loading, a
crack between two different piezoelectric materials can produce
essential zones of crack faces contact, which cardinally change
the electromechanical fields in the whole crack region and, espe-
cially, at the corresponding crack tips. Using in such cases of the
‘‘open’’ crack model leads to the physically unreal overlapping of
the crack faces and to the impossibility to introduce the stress
intensity factors in the conventional manner. The zones of overlap-
ping of the crack faces are usually longer than the correspondent
contact zones and in some cases they can occupy more than third
part of the crack length. Eliminating of these zones and determina-
tion of the real crack form and corresponding fracture mechanical
parameters is the physical reason of the contact zone model
consideration.

A contact zone model (Comninou, 1977; Atkinson, 1982;
Dundurs and Gautesen, 1988) was developed for a crack between
isotropic materials. This model was applied to interface cracks in
thermopiezoelectric materials by Qin and Mai (1999) using a singu-
lar integral equation formulation and its following numerical solu-
tion. A detailed analytical investigation of an electrically
permeable and electrically impermeable interface cracks with

0020-7683/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.09.012

⇑ Corresponding author. Tel.: +38 056 3749843; fax: +38 056 3749842.
E-mail addresses: loboda@mail.dsu.dp.ua, lobvv@ua.fm (V. Loboda),

allasheveleva@i.ua (A. Sheveleva), lapusta@ifma.fr (Y. Lapusta)..

International Journal of Solids and Structures 51 (2014) 63–73

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2013.09.012&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2013.09.012
mailto:loboda@mail.dsu.dp.ua
mailto:lobvv@ua.fm
mailto:lapusta@ifma.fr
http://dx.doi.org/10.1016/j.ijsolstr.2013.09.012
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


contact zones in a piezoelectric bimaterials has been performed by
Herrmann and Loboda (2000) and by Herrmann et al. (2001), respec-
tively. However, to our best knowledge, an electrically conducting
interface crack in a piezoelectric bimaterial has not been studied
yet, in spite of the possibility of appearance of large contact zones
for such cracks under the action of electric field. This situation is
quite different from the above mentioned cases of an electrically
permeable and electrically impermeable interface crack, in which
the electrical loading has only very small influence concerning the
possibility of the crack faces contact.

In the present paper, we focus on a contact zone problem of
electrically conducting interface crack in a piezoelectric bimaterial
subjected to a tension and shear mechanical loading and an electri-
cal field parallel to the crack faces. A significant influence of the
electrical field intensity on the contact zone length and the fracture
mechanical parameters is demonstrated. For the comparison the
electrically permeable conditions in the crack region are consid-
ered as well.

2. General solution of the basic equation

The constitutive relations for a linear piezoelectric material in
the absence of body forces and free charges can be presented in
the form (Parton and Kudryavtsev, 1988)

rij ¼ cijklckl � ekijEk; ð1Þ

Di ¼ eiklckl þ eikEk; ð2Þ

rij;i ¼ 0; Di;i ¼ 0; ð3Þ

cij ¼ 0:5 ui;j þ uj;i
� �

; Ei ¼ �u;i; ð4Þ

where uk; u; rij; cij and Di are the elastic displacements, electric
potential, stresses, strains and electric displacements, respectively;
cijkl; elij and eij are the elastic moduli, piezoelectric constants and
dielectric constants, respectively. The subscripts in (1)–(4) are rang-
ing from 1 to 3 and Einstein’s summation convention is used in
(1)–(3).

Substituting Eq. (4) into (1) and (2) and after that into (3), one
obtains

cijkluk þ eliju
� �

;li ¼ 0; eikluk � eiluð Þ;li ¼ 0: ð5Þ

Assuming that all fields are independent on the coordinate x2,
the solution of Eq. (5), according to the method suggested by Eshel-
by et al. (1953), can be presented in the form (Suo et al., 1992).

V ¼ a f ðzÞ; ð6Þ

where z ¼ x1 þ px3; V ¼ u1;u2;u3;u½ �T ; f ðzÞ is an arbitrary function
to be determined; a ¼ a1; a2; a3; a4½ �T and p are an eigenvector and
an eigenvalue, respectively, which can be obtained from the
equation

Q 0 þ p R0 þ RT
0

� �
þ p2T0

h i
a ¼ 0; ð7Þ

with 4 � 4 matrices Q 0; R0 and T0 defined as

Q 0¼
ci1k1 e11i

eT
11i �e11

� �
; R0¼

ci1k3 e31i

eT
13i �e13

� �
; T0¼

ci3k3 e33i

eT
33i �e33

� �
; i;k¼1;2;3:

Here and afterwards, the superscript T stands for the transposed
matrix.

According to Suo et al. (1992) Eq. (7) has no real eigenvalues.
Therefore, we denote an eigenvalue of the relation (7) with positive
imaginary parts as pa and the associated eigenvectors of (7) as aa

(subscript a here and afterwards takes the numerals 1–4). The

most general real solution of Eq. (5) can be presented as (Suo
et al., 1992)

V ¼ AfðzÞ þ �A�f ð�zÞ; ð8Þ

where A ¼ a1;a2;a3;a4½ � is a matrix composed of eigenvectors,
fðzÞ ¼ ½f1ðz1Þ; f2ðz2Þ; f 3ðz3Þ; f4ðz4Þ�T is an arbitrary vector function,
za ¼ x1 þ pax3 and the overbar stands for the complex conjugate.

Consider the vector

t ¼ r13;r23;r33;D3½ �T : ð9Þ

Using Eqs. (1) and (2), this vector can be presented in the form

t ¼ Bf 0ðzÞ þ �B�f 0ð�zÞ; ð10Þ

where the 4 � 4 matrix B is defined as

BJa ¼ E3JK1 þ paE3JK3
� �

AKa ðnot summed over index aÞ;
J;K ¼ 1;2;3;4 ð11Þ

and f 0ðzÞ ¼ df1ðz1Þ
dz1

; df2ðz2Þ
dz2

; df3ðz3Þ
dz3

; df4ðz4Þ
dz4

h iT
.

For the following analysis related to the conducting crack, it is
convenient to introduce the vectors

L ¼ u01;u
0
2;u

0
3;D3

� 	T
; P ¼ r31;r32;r33; E1½ �T ; ð12Þ

where the prime means the differentiation on x1.
Using relations (8) and (10), these vectors can be presented in

the form (Loboda and Mahnken, 2011)

L ¼Mf 0ðzÞ þ �M�f 0 �zð Þ; ð13Þ

P ¼ Nf 0ðzÞ þ �N�f 0 �zð Þ; ð14Þ

where the matrices M and N are found by means of the reconstruc-
tion of the matrices A, B. They have the following form

M ¼

a1J

a2J

a3J

b4J

2
6664

3
7775

J¼1;2;3;4

; N ¼

b1J

bJ

b3J

�a4J

2
6664

3
7775

J¼1;2;3;4

: ð15Þ

Consider now a bimaterial composed of two different piezoelec-
tric semi-infinite spaces x3 > 0 and x3 < 0 having, respectively, the

properties cð1Þijkl; eð1Þlij ; eð1Þij and cð2Þijkl; eð2Þlij ; eð2Þij . We assume, that the
vector P is continuous across the whole bimaterial interface. This
means that the boundary conditions at the interface x3 ¼ 0 are
the following

Pð1Þ x1;0ð Þ ¼ Pð2Þ x1;0ð Þ for x1 2 �1;1ð Þ: ð16Þ

To construct the presentations, which satisfy the interface con-
ditions (16), we use Eqs. (13) and (14) for upper and lower half-
planes which can be written in the form

LðmÞ ¼MðmÞf 0ðmÞðzÞ þ �MðmÞ�f 0ðmÞ �zð Þ; ð17Þ

PðmÞ ¼ NðmÞf 0ðmÞðzÞ þ �NðmÞ�f 0ðmÞ �zð Þ: ð18Þ

Satisfying the bimaterial interface condition (16), the following
presentations are obtained similarly to Loboda and Mahnken
(2011)

L x1ð Þh i ¼Wþ x1ð Þ �W� x1ð Þ; ð19Þ

Pð1Þ x1;0ð Þ ¼ SWþ x1ð Þ � �SW� x1ð Þ; ð20Þ

where S ¼ Nð1ÞD�1; D ¼Mð1Þ � �Mð2Þ �Nð2Þ
� ��1

Nð1Þ; WðzÞ is a vector-
function which is analytic in each semi-infinite plane and
Wþ x1ð Þ ¼W x1 þ i � 0ð Þ;W� x1ð Þ ¼W x1 � i � 0ð Þ. Here and afterwards,
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